elementwise_op_function.h 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
17
#include "paddle/framework/op_registry.h"
18
#include "paddle/framework/operator.h"
C
chengduoZH 已提交
19
#include "paddle/platform/transform.h"
20

C
chengduoZH 已提交
21 22 23 24
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
#endif

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
 *    x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
 *    x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

C
chengduoZH 已提交
62
template <typename T, typename Place>
C
chengduoZH 已提交
63
class RowwiseTransformIterator;
C
chengduoZH 已提交
64
template <typename T, typename Place>
C
chengduoZH 已提交
65
class MidWiseTransformIterator;
C
chengduoZH 已提交
66 67

template <typename T>
C
chengduoZH 已提交
68 69
class RowwiseTransformIterator<T, platform::CPUPlace> {
 public:
C
chengduoZH 已提交
70 71 72 73
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

  RowwiseTransformIterator<T, platform::CPUPlace>& operator++() {
    ++i_;
C
chengduoZH 已提交
74
    i_ %= n_;
C
chengduoZH 已提交
75 76 77 78 79
    return *this;
  }

  bool operator==(
      const RowwiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
80
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
81 82 83 84
  }

  bool operator!=(
      const RowwiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
85
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
86 87 88 89
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
90
 private:
C
chengduoZH 已提交
91 92
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
93
  int64_t n_;
C
chengduoZH 已提交
94 95 96
};

template <typename T>
C
chengduoZH 已提交
97 98
class MidWiseTransformIterator<T, platform::CPUPlace> {
 public:
C
chengduoZH 已提交
99 100 101 102
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

  MidWiseTransformIterator<T, platform::CPUPlace>& operator++() {
C
chengduoZH 已提交
103
    i_ = (++j_ / post_) % n_;
C
chengduoZH 已提交
104 105 106 107 108
    return *this;
  }

  bool operator==(
      const MidWiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
109
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
110 111 112 113
  }

  bool operator!=(
      const MidWiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
114
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
115 116 117 118
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
119
 private:
C
chengduoZH 已提交
120 121
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
122 123
  int64_t j_;
  int64_t n_;
C
chengduoZH 已提交
124 125 126
  int post_;
};

C
chengduoZH 已提交
127 128
#ifdef __NVCC__
template <typename T>
C
chengduoZH 已提交
129
class RowwiseTransformIterator<T, platform::GPUPlace>
C
chengduoZH 已提交
130 131 132 133 134 135
    : public thrust::iterator_adaptor<
          RowwiseTransformIterator<T, platform::GPUPlace>, const T*> {
 public:
  typedef thrust::iterator_adaptor<
      RowwiseTransformIterator<T, platform::GPUPlace>, const T*>
      super_t;
C
chengduoZH 已提交
136
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
C
chengduoZH 已提交
137 138 139 140 141 142
      : super_t(x), begin_(x), n_(n){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
143
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
144 145 146 147 148
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
C
chengduoZH 已提交
149
class MidWiseTransformIterator<T, platform::GPUPlace>
C
chengduoZH 已提交
150 151 152 153 154 155
    : public thrust::iterator_adaptor<
          MidWiseTransformIterator<T, platform::GPUPlace>, const T*> {
 public:
  typedef thrust::iterator_adaptor<
      MidWiseTransformIterator<T, platform::GPUPlace>, const T*>
      super_t;
C
chengduoZH 已提交
156
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
C
chengduoZH 已提交
157 158 159 160 161 162 163
      : super_t(x), begin_(x), n_(n), post_(post){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
164
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
165 166 167 168 169
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

C
chengduoZH 已提交
170
template <typename Functor, typename T, typename Place>
C
chengduoZH 已提交
171 172
class TransformFunctor {
 public:
C
chengduoZH 已提交
173
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
C
chengduoZH 已提交
174
                   framework::Tensor* z, const platform::DeviceContext& ctx,
C
chengduoZH 已提交
175 176 177 178 179 180 181 182 183 184
                   Functor func)
      : x_(x->data<T>()),
        y_(y->data<T>()),
        z_(z->mutable_data<T>(ctx.GetPlace())),
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
    platform::Transform<Place> trans;
C
chengduoZH 已提交
185
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
186 187 188 189
  }

  inline void RunRowWise(int n, int pre) const {
    platform::Transform<Place> trans;
C
chengduoZH 已提交
190 191
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, Place>(y_, n), z_,
          func_);
C
chengduoZH 已提交
192 193 194 195
  }

  inline void RunMidWise(int n, int pre, int post) const {
    platform::Transform<Place> trans;
C
chengduoZH 已提交
196 197
    trans(ctx_, x_, x_ + nx_, MidWiseTransformIterator<T, Place>(y_, n, post),
          z_, func_);
C
chengduoZH 已提交
198 199
  }

C
chengduoZH 已提交
200
 private:
C
chengduoZH 已提交
201 202 203 204
  const T* x_;
  const T* y_;
  T* z_;
  int64_t nx_;
C
chengduoZH 已提交
205
  const platform::DeviceContext& ctx_;
C
chengduoZH 已提交
206 207 208
  Functor func_;
};

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
    template <typename Place, typename T>                                      \
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_e);            \
    }                                                                          \
    template <typename Place, typename T>                                      \
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast);        \
    }                                                                          \
    template <typename Place, typename T>                                      \
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast);        \
    }                                                                          \
  }

template <class functor, typename Place, typename T>
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* z = ctx.Output<Tensor>("Out");
  z->mutable_data<T>(ctx.GetPlace());

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
261
                    "Rank of first input must >= rank of second input.");
262

Q
qijun 已提交
263
  if (x_dims == y_dims) {
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    functor f;
    f.template Run<Place, T>(x, y, z, ctx);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor f;
    f.template RunBroadCast<Place, T>(x, y, z, ctx, pre, n);
    return;
  } else {
    functor f;
    f.template RunBroadCast2<Place, T>(x, y, z, ctx, pre, n, post);
    return;
  }
}

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

template <typename Place, typename T, typename functor, typename functor1,
          typename broadcastfunctor, typename broadcast2functor>
void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Input<Tensor>("Out");
  auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

  auto place = ctx.GetEigenDevice<Place>();

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
}  // namespace operators
}  // namespace paddle