distribute_transpiler.py 74.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
42
                        default_startup_program, Block, \
W
Wu Yi 已提交
43
                        Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
53 54 55 56 57 58 59 60 61
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
62 63


T
typhoonzero 已提交
64 65 66 67 68 69
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
70

T
typhoonzero 已提交
71 72
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
73 74


75 76 77 78
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
79
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
80
    """
81 82 83 84 85 86
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
87
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
88 89 90

    Args:
        var_list (list): List of variables.
91 92
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
93 94
        min_block_size (int): Minimum splitted block size.
    Returns:
95
        blocks (list[(varname, block_id, current_block_size)]): A list
96
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
97 98 99
    """
    blocks = []
    for var in var_list:
100
        split_count = slice_count
T
typhoonzero 已提交
101 102 103 104
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
105
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
106 107 108 109 110 111 112 113 114
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
115
        # update split_count after aligning
T
typhoonzero 已提交
116
        split_count = int(math.ceil(var_numel / float(block_size)))
117
        for block_id in range(split_count):
T
typhoonzero 已提交
118 119 120 121 122 123 124
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
125 126 127 128 129 130 131
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
132
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
133 134 135 136 137 138
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
139 140
    # supported modes: pserver, nccl2
    mode = "pserver"
141
    print_log = False
G
gongweibao 已提交
142 143


Y
gen rst  
yi.wu 已提交
144
class DistributeTranspiler(object):
Y
yi.wu 已提交
145 146 147 148
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
149
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
150

W
Wu Yi 已提交
151 152 153 154 155 156 157 158 159
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
160 161 162 163

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
164 165 166 167 168 169
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
170 171
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
172
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
173 174 175 176 177 178 179 180
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
W
Wu Yi 已提交
181 182 183 184 185 186 187 188 189 190 191 192
           
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
193
    """
Y
Yancey1989 已提交
194

G
gongweibao 已提交
195 196 197 198 199 200 201 202 203
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

204 205 206
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
207 208 209
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

237 238 239 240 241
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
242
                  sync_mode=True,
W
Wu Yi 已提交
243 244
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
245
        """
Y
yi.wu 已提交
246 247 248 249 250 251 252 253 254
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
255 256 257
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
258
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
259 260
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
261 262 263
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
264 265 266
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
267 268
        if startup_program is None:
            startup_program = default_startup_program()
269
        self.origin_program = program
W
Wu Yi 已提交
270 271
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
272

W
Wu Yi 已提交
273 274 275 276 277 278 279 280 281
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

282 283 284 285 286 287 288
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
289
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
290
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
291
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
292
        self.grad_name_to_param_name = dict()
293 294
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
295
            self.grad_name_to_param_name[grad_var.name] = param_var.name
296

T
tangwei12 已提交
297 298 299 300 301 302
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

303
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
304
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
305
        self._init_splited_vars()
306

G
gongweibao 已提交
307
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
308
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
309
        send_vars = []
310 311 312 313 314 315

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
316
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
317

G
gongweibao 已提交
318
        if not self.config.slice_var_up:
319 320
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
321

322
        self.grad_name_to_send_dummy_out = dict()
323
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
324
            eplist = ps_dispatcher.dispatch(splited_vars)
325

G
gongweibao 已提交
326
            if not self.config.slice_var_up:
327 328
                assert (len(splited_vars) == 1)

329
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
330
            if len(splited_vars) == 1:
331
                splited_grad_varname = splited_vars[0].name
332 333
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
334
            elif len(splited_vars) > 1:
335
                orig_var = program.global_block().vars[splited_grad_varname]
336 337
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
338
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
339
                index += 1
Y
Yancey1989 已提交
340 341
            else:
                AssertionError("Can not insert the send op by original "
342
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
343

W
Wu Yi 已提交
344 345
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
346
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
347

W
Wu Yi 已提交
348 349 350 351
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
352
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
353
                index=index + 1,
354
                type="send",
Y
update  
Yancey1989 已提交
355
                inputs={"X": splited_vars},
356
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
357 358
                attrs={
                    "epmap": eplist,
359
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
360 361 362 363
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
364
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
365
                })
Y
update  
Yancey1989 已提交
366 367
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
368 369

        if self.sync_mode:
W
Wu Yi 已提交
370 371
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
372 373 374 375
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
376
            input_deps = list(self.grad_name_to_send_dummy_out.values())
377

Y
Yancey1989 已提交
378 379
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
380
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
381
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
382 383
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
384
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
385
                })
Y
Yancey1989 已提交
386

G
gongweibao 已提交
387
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
388
        recv_vars = []
Y
update  
Yancey1989 已提交
389
        for _, var in enumerate(send_vars):
390
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
391
        ps_dispatcher.reset()
Y
Yancey1989 已提交
392 393
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
394
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
395 396
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
397

Y
Yancey1989 已提交
398
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
399
        all_recv_outputs = []
400
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
401 402 403 404
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
405 406 407 408
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
409
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
410 411
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
412 413 414 415 416 417 418 419 420
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
421 422
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
423
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
424 425 426
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
427
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
428 429
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
430
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
431
                })
T
typhoonzero 已提交
432

Q
qiaolongfei 已提交
433
        if self.sync_mode:
W
Wu Yi 已提交
434
            # form a WAW dependency
Q
qiaolongfei 已提交
435 436 437
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
438
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
439 440 441 442
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
443

444
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
445 446
            if len(splited_var) <= 1:
                continue
447
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
448
            program.global_block().append_op(
T
typhoonzero 已提交
449
                type="concat",
T
typhoonzero 已提交
450
                inputs={"X": splited_var},
T
typhoonzero 已提交
451
                outputs={"Out": [orig_param]},
452 453 454 455
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
456

G
gongweibao 已提交
457 458
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

459
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
460 461
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
462
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
463

W
Wu Yi 已提交
464
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
465 466 467 468 469 470
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
471
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
472
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
473
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
474
        self.origin_program.__str__()
G
gongweibao 已提交
475

W
Wu Yi 已提交
476 477 478
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

479
        return self.origin_program
T
typhoonzero 已提交
480

W
Wu Yi 已提交
481
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
482 483 484 485
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
486
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
487
            eplist (list): A list of strings indicating
G
gongweibao 已提交
488 489 490 491

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
492
        startup_program = self.startup_program
G
gongweibao 已提交
493 494 495 496

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
497
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
518
                inputs={"X": []},
G
gongweibao 已提交
519 520 521 522 523 524
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
525 526
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
527 528 529
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
530
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
531 532 533 534 535
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
536
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
537 538 539
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
540
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
541
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
542 543 544 545 546 547 548 549 550 551
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
552 553 554 555 556 557 558 559
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
560 561
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
562
        Get parameter server side program.
563

Y
yi.wu 已提交
564 565
        Args:
            endpoint (str): current parameter server endpoint.
566

Y
yi.wu 已提交
567 568
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
569
        """
Y
yi.wu 已提交
570 571 572 573
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
574 575 576
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
577 578
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
579
        pserver_program.random_seed = self.origin_program.random_seed
580
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
581 582 583 584 585 586 587 588
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
589 590 591 592 593
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
594 595 596 597 598 599 600 601 602
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
603
            if self.sync_mode and self.trainer_num > 1:
604
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
605 606 607 608 609 610 611 612 613
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
614

Q
qiaolongfei 已提交
615
        # step 3
616
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
617 618 619
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
620
        # step 3.2
T
typhoonzero 已提交
621 622 623 624
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
625 626
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
627
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
628
        # step 3.3
T
typhoonzero 已提交
629
        # Iterate through the ops, and if an op and the optimize ops
630
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
631
        # append it into the sub program.
T
typhoonzero 已提交
632 633 634

        global_ops = []

Y
wip  
yi.wu 已提交
635 636
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
637
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
638
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
639
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
640
            elif op not in lr_ops:
Q
Qiyang Min 已提交
641
                self._append_pserver_non_opt_ops(block, op)
642 643 644 645 646 647

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
648

Y
Yancey1989 已提交
649
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
650 651 652 653 654 655 656 657
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
658
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
659 660 661

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
662
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
663 664

            # clone ops
Y
Yancey1989 已提交
665 666
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
667
                # clone sub_block of op
Y
Yancey1989 已提交
668
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
669 670 671 672

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

673
        # append lr decay ops to the child block if exists
674
        lr_ops = self._get_lr_ops()
675 676
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
677
        if len(lr_ops) > 0:
W
Wu Yi 已提交
678
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
679
                pserver_program.num_blocks - 1)
680
            optimize_blocks.append(lr_decay_block)
681
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
682
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
683
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
684 685
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
686

T
typhoonzero 已提交
687
        # append op to the current block
Q
qiaolongfei 已提交
688
        grad_to_block_id = []
Q
qiaolongfei 已提交
689
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
690
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
691
            per_opt_block = pserver_program._create_block(pre_block_idx)
692
            optimize_blocks.append(per_opt_block)
693
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
694
            # append grad merging ops before clip and weight decay
695 696
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
697
            for _, op in enumerate(self.optimize_ops):
698 699 700 701 702
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
703 704 705
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
706 707 708 709 710 711 712 713 714 715 716 717
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
                        op not in global_ops:
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
718

W
Wu Yi 已提交
719 720
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
721
        # append global ops
722
        if global_ops:
W
Wu Yi 已提交
723
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
724
                pserver_program.num_blocks - 1)
725
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
726
            for glb_op in global_ops:
X
Xi Chen 已提交
727
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
728
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
729

730
        # process distributed lookup_table
Q
qiaolongfei 已提交
731
        prefetch_var_name_to_block_id = []
732 733
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
734
            table_opt_block = self._create_table_optimize_block(
735
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
736
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
737
            prefetch_var_name_to_block_id = self._create_prefetch_block(
738
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
739 740
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
741

T
tangwei12 已提交
742 743
            pserver_program._distributed_lookup_table = self.table_name

744 745 746
        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
747
            assert len(prefetch_var_name_to_block_id) > 0
748
        else:
Q
qiaolongfei 已提交
749
            assert len(prefetch_var_name_to_block_id) == 0
750

751
        attrs = {
752
            "optimize_blocks": optimize_blocks,
753 754 755
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
756
            "grad_to_block_id": grad_to_block_id,
757 758 759 760
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
761
            attrs['checkpint_block_id'] = checkpoint_block_id
762

T
typhoonzero 已提交
763 764 765 766 767
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
768
            attrs=attrs)
769

T
tangwei12 已提交
770
        # add distributed attrs
T
tangwei12 已提交
771
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
772
            endpoint)
773

W
Wu Yi 已提交
774
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
775 776
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
777 778
        return pserver_program

W
Wu Yi 已提交
779 780 781 782 783 784
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
785

W
Wu Yi 已提交
786 787 788 789 790 791 792
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
        pserver_startup = self.get_startup_program(endpoint)
        return pserver_prog, pserver_startup

793 794
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
795
                            pserver_program=None,
796
                            startup_program=None):
T
typhoonzero 已提交
797
        """
W
Wu Yi 已提交
798 799
        **Deprecated**

T
typhoonzero 已提交
800 801 802
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
803 804 805

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
806 807
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
808
                when initalizing
809

Y
yi.wu 已提交
810 811
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
812
        """
813 814 815
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
816
        if pserver_program != None:
817 818 819
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
820
        if startup_program != None:
821 822 823
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
824

T
typhoonzero 已提交
825
        s_prog = Program()
W
Wu Yi 已提交
826
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
827
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
828 829 830 831 832 833 834 835 836 837 838
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
839
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
840
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
841
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
842 843 844 845
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
846
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
847 848
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
849 850 851 852 853 854 855 856 857 858
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
859 860

            if op_on_pserver:
861 862 863
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
864 865 866
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
867
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
868 869 870 871
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
872
                    attrs=op.all_attrs())
873 874

        # add slice vars
T
tangwei12 已提交
875
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
876

T
typhoonzero 已提交
877 878
        return s_prog

T
tangwei12 已提交
879 880 881
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
882
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
883
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
884
            if not block_name:
885 886
                continue

T
tangwei12 已提交
887
            block_idx = int(block_name.split(block_suffix)[1])
888 889 890 891 892 893
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
894
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
895

T
tangwei12 已提交
896
        return slice_vars_and_attrs
897

898 899
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
900 901 902 903 904 905 906 907 908
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
909
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
961
    def _init_splited_vars(self):
Y
yi.wu 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
985
        if self.config.slice_var_up:
Y
yi.wu 已提交
986 987
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
988 989 990
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
991
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
992 993
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
994 995 996
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
997 998 999 1000
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1001 1002
        assert (len(grad_blocks) == len(param_blocks))

1003
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1004 1005
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1006
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1007 1008 1009 1010
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1011
        # dict(grad_splited_var -> param_splited_var)
1012
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1013 1014 1015 1016
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
1017
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1018 1019

        # create mapping of endpoint -> split var to create pserver side program
1020
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1030
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1031 1032
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1033
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
1043 1044 1045 1046 1047 1048 1049 1050 1051

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

1052
                    lookup_table_op_index = list(all_ops).index(op)
1053 1054 1055
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1056
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
1057
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1058 1059 1060 1061 1062 1063
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
1064
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1065 1066 1067 1068
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
1069 1070

                    # insert split_ids_op
W
Wu Yi 已提交
1071
                    program.global_block()._insert_op(
1072
                        index=lookup_table_op_index,
1073 1074 1075 1076 1077 1078 1079
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
1080
                        outputs={"Out": prefetch_input_vars})
1081 1082

                    # insert prefetch_op
W
Wu Yi 已提交
1083
                    program.global_block()._insert_op(
1084
                        index=lookup_table_op_index + 1,
1085
                        type="prefetch",
Q
qiaolongfei 已提交
1086 1087
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
1088
                        attrs={
1089
                            "epmap": pserver_endpoints,
1090 1091 1092
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
1093
                        })
1094 1095

                    # insert concat_op
W
Wu Yi 已提交
1096
                    program.global_block()._insert_op(
1097 1098 1099 1100 1101 1102 1103
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
1104
                            'X': prefetch_output_vars
1105
                        },
1106 1107 1108 1109 1110
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
1111
                        })
1112 1113

                    # delete lookup_table_op
1114
                    delete_ops(program.global_block(), [op])
1115 1116 1117
                    # break for loop
                    break

Y
Yancey1989 已提交
1118
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1119
        # 2. add split_ids_op and send_op to send gradient to pservers
1120 1121
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1122
        table_grad_name = grad_var_name(self.table_name)
1123 1124 1125 1126
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1127
                program.global_block()._insert_op(
1128 1129 1130 1131 1132
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1133
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1134
                program.global_block()._insert_op(
1135
                    index=op_index + 2,
1136
                    type="send",
1137
                    inputs={'X': self.trainer_side_table_grad_list},
1138 1139 1140 1141 1142
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1143
                    attrs={
Q
qiaolongfei 已提交
1144
                        "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1145
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1146 1147 1148 1149 1150
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1151
                    })
1152 1153 1154 1155 1156 1157
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1158 1159
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
W
Wu Yi 已提交
1160
            prefetch_block = pserver_program._create_block(optimize_block.idx)
Q
qiaolongfei 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1186 1187

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1188
                                     pre_block_idx, grad_to_block_id):
1189 1190
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1191 1192
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1193

T
tangwei12 已提交
1194
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1195 1196
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1197 1198 1199
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1200 1201
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1202
            shape=table_shape,
Y
Yancey1989 已提交
1203 1204 1205
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1206 1207
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1208
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1209
            self.origin_program.global_block().vars[grad_var_name(
1210
                self.table_name)])
1211 1212 1213 1214

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1215 1216
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1217
        ][0]
W
Wu Yi 已提交
1218
        table_opt_block = pserver_program._create_block(pre_block_idx)
1219

1220 1221 1222
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1223
            pserver_side_table_grad_list = [
1224 1225 1226 1227 1228 1229 1230 1231 1232
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1233
            # append sum op for pserver_side_table_grad_list
1234 1235
            table_opt_block.append_op(
                type="sum",
1236
                inputs={"X": pserver_side_table_grad_list},
1237 1238
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1239 1240
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1241
            origin_grad_name = grad_var.name
1242 1243
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1244 1245
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1246
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1247
            grad_var = pserver_program.global_block()._rename_var(
1248
                origin_grad_name, splited_grad_name)
1249 1250 1251 1252 1253 1254 1255 1256 1257

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1258
        # only support sgd now
1259 1260 1261 1262
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1263
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1264

1265 1266 1267
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1268 1269
        return table_opt_block

T
tangwei12 已提交
1270 1271 1272 1273 1274 1275
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1276
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1277
            name="kLookupTablePath",
T
tangwei12 已提交
1278 1279
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1280

W
Wu Yi 已提交
1281
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1282
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1283 1284 1285 1286
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1287
            attrs={'file_path': "none"})
T
tangwei12 已提交
1288 1289 1290

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1291 1292 1293 1294 1295
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1296
        Create vars for each split.
T
typhoonzero 已提交
1297 1298
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1299 1300 1301 1302
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1303
        Returns:
1304
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1305
                from original var name to each var split.
T
typhoonzero 已提交
1306
        """
1307 1308

        # varname->[(block_id, current_block_size)]
1309
        block_map = collections.OrderedDict()
1310

1311
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1312 1313
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1314
            if varname not in block_map:
T
typhoonzero 已提交
1315
                block_map[varname] = []
1316
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1317

M
minqiyang 已提交
1318
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1319
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1320
            if len(splited) == 1:
1321
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1322 1323
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1324
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1325 1326 1327 1328 1329
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1330
                continue
T
typhoonzero 已提交
1331
            var_mapping[varname] = []
T
typhoonzero 已提交
1332 1333 1334 1335
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1336

T
typhoonzero 已提交
1337
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1338
                size = block[1]
M
minqiyang 已提交
1339
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1340 1341 1342
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1343
                new_var_name = ""
1344
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1345 1346 1347 1348 1349
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1350
                var = program.global_block().create_var(
T
typhoonzero 已提交
1351 1352
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1353
                    dtype=orig_var.dtype,
1354
                    type=orig_var.type,
T
typhoonzero 已提交
1355
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1356
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1357
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1358
        return var_mapping
T
done  
typhoonzero 已提交
1359

W
Wu Yi 已提交
1360
    def _create_splited_vars(self, source_var, block, tag):
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1371 1372 1373 1374 1375 1376
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1377
            persistable=persistable)
T
done  
typhoonzero 已提交
1378

Y
Yancey1989 已提交
1379
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1380 1381 1382 1383
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1384
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1385 1386 1387 1388
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1389 1390 1391 1392
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1393 1394 1395 1396
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1397
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1398 1399 1400 1401
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1402 1403 1404 1405
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1406 1407 1408
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1409

T
typhoonzero 已提交
1410 1411 1412 1413
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1414
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1430 1431
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1432
                return param_shape
1433 1434 1435
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
T
typhoonzero 已提交
1436 1437 1438 1439
        elif op_type == "sgd":
            pass
        return orig_shape

1440 1441
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1442
        orig_var_name = ""
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1453
        else:
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1476
            return None
1477 1478 1479 1480
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1481
        else:
1482
            merged_var_name = orig_varname
1483 1484

        merged_var = pserver_block.vars[merged_var_name]
1485 1486 1487
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1488
            for i in range(self.trainer_num):
1489 1490 1491 1492 1493 1494 1495
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1496 1497
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1498 1499 1500 1501 1502
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1503
        return merged_var
T
typhoonzero 已提交
1504

1505
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1506
                            grad_to_block_id, origin_program, merged_var):
1507
        program = optimize_block.program
T
typhoonzero 已提交
1508
        pserver_block = program.global_block()
1509
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1520
        for key in opt_op.input_names:
T
typhoonzero 已提交
1521 1522 1523
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1524
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1525 1526
                if not param_block:
                    return
T
typhoonzero 已提交
1527
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1528
                    name=param_block.name,
T
typhoonzero 已提交
1529
                    persistable=True,
T
typhoonzero 已提交
1530 1531 1532
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1533
            elif key == "LearningRate":
1534
                # learning rate variable has already be created by non-optimize op,
1535
                # don't create it once again.
1536
                lr_varname = opt_op.input(key)[0]
1537
                if lr_varname in pserver_block.vars:
1538 1539 1540 1541 1542 1543 1544 1545 1546
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1547

T
typhoonzero 已提交
1548
        for key in opt_op.input_names:
1549
            new_shape = None
W
Wu Yi 已提交
1550
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1551
                continue
1552
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1553 1554 1555 1556
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1557
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1558 1559 1560 1561 1562
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1563

1564
        # change output's ParamOut variable
1565 1566
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1567
        outputs["ParamOut"] = new_inputs["Param"]
1568
        optimize_block.append_op(
T
typhoonzero 已提交
1569 1570
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1571
            outputs=outputs,
G
gongweibao 已提交
1572
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1573

1574 1575
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1576
        for _, g in six.iteritems(var_dict):
1577 1578 1579 1580 1581 1582
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1583 1584 1585
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1586
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1587 1588 1589 1590
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1591
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1592 1593 1594

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1595
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1596 1597 1598 1599
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1600
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1601

Y
Yancey1989 已提交
1602
        return block.append_op(
G
gongweibao 已提交
1603
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1604 1605

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1606
        program = optimize_block.program
1607
        # Append the ops for parameters that do not need to be optimized/updated
1608 1609
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1610
        for key, varlist in six.iteritems(inputs):
1611 1612
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1613
            for var in varlist:
1614 1615 1616 1617 1618 1619
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1620
                elif var.name not in program.global_block().vars:
1621
                    program.global_block().create_var(
T
typhoonzero 已提交
1622 1623 1624 1625 1626
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1627 1628
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1629
        for key, varlist in six.iteritems(outputs):
1630 1631 1632
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1633 1634 1635 1636
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1637
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1638
                    program.global_block()._clone_variable(var)
1639

Y
Yancey1989 已提交
1640
        return optimize_block.append_op(
T
typhoonzero 已提交
1641
            type=opt_op.type,
T
typhoonzero 已提交
1642 1643
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1644
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1645

1646 1647 1648 1649
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1650 1651
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1652 1653 1654 1655 1656 1657
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1658 1659
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1660 1661 1662 1663 1664 1665
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1666
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1667 1668
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1669 1670 1671 1672 1673 1674 1675
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1676
        if op.input("Param")[0] in param_names:
1677 1678 1679
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1680
                param = op.input("Param")[0]
T
typhoonzero 已提交
1681
                if same_or_split_var(n, param) and n != param:
1682 1683 1684
                    return True
            return False

T
typhoonzero 已提交
1685
    def _get_input_map_from_op(self, varmap, op):
1686
        """Returns a dict from op input name to the vars in varmap."""
1687
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1699
        """Returns a dict from op output name to the vars in varmap."""
1700
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1710 1711

    def _get_lr_ops(self):
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
            if int(op.attr(RPC_OP_ROLE_ATTR_NAME)) == int(
                    LR_SCHED_OP_ROLE_ATTR_VALUE):
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1722 1723 1724 1725
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1726
            if self._is_optimizer_op(op):
1727 1728 1729 1730
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1731
        block = self.origin_program.global_block()
1732 1733 1734 1735 1736
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1737

1738 1739 1740 1741 1742
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1743
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1744 1745 1746 1747 1748 1749
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1750 1751
                    # we only need to append op for once
                    break
1752
        return lr_ops
Y
Yancey1989 已提交
1753

W
Wu Yi 已提交
1754 1755 1756 1757 1758
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1759 1760
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1761 1762 1763
            return True
        return False

Y
Yancey1989 已提交
1764
    def _get_optimize_pass(self):
1765
        """
1766
        Get optimizer operators, parameters and gradients from origin_program
1767 1768 1769 1770
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1771 1772 1773
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1774 1775
        # tmp set to dedup
        optimize_params = set()
1776
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1777
        for op in block.ops:
W
Wu Yi 已提交
1778
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1779
                opt_ops.append(op)
1780 1781 1782 1783 1784 1785
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1786 1787
                        params_grads.append([
                            origin_var_dict[param_name],
1788
                            origin_var_dict[grad_name]
1789
                        ])
Y
Yancey1989 已提交
1790 1791 1792
            else:
                pass
        return opt_ops, params_grads