distribute_transpiler.py 66.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
42
                        default_startup_program, Block, \
W
Wu Yi 已提交
43
                        Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
53 54


T
typhoonzero 已提交
55 56 57 58 59 60
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
61

T
typhoonzero 已提交
62 63
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
64 65


66 67 68 69
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
70
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
71
    """
72 73 74 75 76 77
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
78
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
79 80 81

    Args:
        var_list (list): List of variables.
82 83
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
84 85
        min_block_size (int): Minimum splitted block size.
    Returns:
86
        blocks (list[(varname, block_id, current_block_size)]): A list
87
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
88 89 90
    """
    blocks = []
    for var in var_list:
91
        split_count = slice_count
T
typhoonzero 已提交
92 93 94 95
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
96
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
97 98 99 100 101 102 103 104 105
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
106
        # update split_count after aligning
T
typhoonzero 已提交
107
        split_count = int(math.ceil(var_numel / float(block_size)))
108
        for block_id in range(split_count):
T
typhoonzero 已提交
109 110 111 112 113 114 115
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
116 117 118 119 120 121 122
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
123
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
124 125 126 127 128 129 130 131
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
132
class DistributeTranspiler(object):
Y
yi.wu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
167

G
gongweibao 已提交
168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

180 181 182 183 184 185 186
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
187 188 189 190 191 192 193 194 195 196 197
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
198 199 200 201
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
202 203 204
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
205 206 207 208 209 210 211
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
212
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
213
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
214 215 216
        self.param_name_to_grad_name = dict()
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
217

T
tangwei12 已提交
218 219 220 221 222 223
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

224
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
225
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
226
        self._init_splited_vars()
227

G
gongweibao 已提交
228
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
229
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
230
        send_vars = []
231 232 233 234 235 236

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
237
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
238

G
gongweibao 已提交
239
        if not self.config.slice_var_up:
240
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
241
            random.shuffle(grad_var_mapping_items)
242

243 244
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
245
            eplist = ps_dispatcher.dispatch(splited_vars)
246

G
gongweibao 已提交
247
            if not self.config.slice_var_up:
248 249
                assert (len(splited_vars) == 1)

250
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
251
            if len(splited_vars) == 1:
252
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
253
                index = find_op_by_output_arg(program.global_block(),
254
                                              splited_grad_varname)
Y
Yancey1989 已提交
255
            elif len(splited_vars) > 1:
256
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
257
                index = find_op_by_output_arg(program.global_block(),
258
                                              splited_grad_varname)
Y
Yancey1989 已提交
259
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
260
                index += 1
Y
Yancey1989 已提交
261 262
            else:
                AssertionError("Can not insert the send op by original "
263
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
264

265 266
            dummy_output = program.global_block().create_var()
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
267
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
268
                index=index + 1,
269
                type="send",
Y
update  
Yancey1989 已提交
270
                inputs={"X": splited_vars},
271
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
272 273
                attrs={
                    "epmap": eplist,
274 275
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
276
                })
Y
update  
Yancey1989 已提交
277 278
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
279 280 281 282 283

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
284
                outputs={},
Y
Yancey1989 已提交
285 286
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
287
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
288
                })
Y
Yancey1989 已提交
289

G
gongweibao 已提交
290
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
291
        recv_vars = []
Y
update  
Yancey1989 已提交
292
        for _, var in enumerate(send_vars):
293
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
294
        ps_dispatcher.reset()
Y
Yancey1989 已提交
295 296
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
297
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
298 299
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
300

Y
Yancey1989 已提交
301
        # step4: Concat the parameters splits together after recv.
302
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
303 304 305 306
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
307 308
            grad_send_dummy_out = grad_name_to_send_dummy_out[
                self.param_name_to_grad_name[param_varname]]
Y
Yancey1989 已提交
309 310
            program.global_block().append_op(
                type="recv",
311
                inputs={"X": [grad_send_dummy_out]},
Y
Yancey1989 已提交
312 313 314
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
315 316
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
317
                })
T
typhoonzero 已提交
318

Q
qiaolongfei 已提交
319 320 321 322 323 324 325 326 327
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
328

329
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
330 331
            if len(splited_var) <= 1:
                continue
332
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
333
            program.global_block().append_op(
T
typhoonzero 已提交
334
                type="concat",
T
typhoonzero 已提交
335
                inputs={"X": splited_var},
T
typhoonzero 已提交
336
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
337
                attrs={"axis": 0})
T
typhoonzero 已提交
338

G
gongweibao 已提交
339 340
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

341
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
342 343
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
344
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
345

T
typhoonzero 已提交
346
    def get_trainer_program(self):
Y
yi.wu 已提交
347 348 349 350 351 352
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
353
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
354
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
355
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
356
        self.origin_program.__str__()
G
gongweibao 已提交
357

358
        return self.origin_program
T
typhoonzero 已提交
359

G
gongweibao 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

        for varname, splited_var in self.param_var_mapping.iteritems():
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
400
                inputs={"X": []},
G
gongweibao 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={},
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        for varname, splited_var in self.param_var_mapping.iteritems():
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
429 430
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
431
        Get parameter server side program.
432

Y
yi.wu 已提交
433 434
        Args:
            endpoint (str): current parameter server endpoint.
435

Y
yi.wu 已提交
436 437
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
438
        """
Y
yi.wu 已提交
439 440 441 442 443
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
444 445
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
446
        pserver_program.random_seed = self.origin_program.random_seed
447
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
448 449 450 451 452 453 454 455
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
456 457 458 459 460
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
461 462 463 464 465 466 467 468 469
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
470
            if self.sync_mode and self.trainer_num > 1:
471
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
472 473 474 475 476 477 478 479 480
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
481

Q
qiaolongfei 已提交
482
        # step 3
483
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
484 485 486
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
487
        # step 3.2
T
typhoonzero 已提交
488 489 490 491
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
492 493
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
494
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
495
        # step 3.3
T
typhoonzero 已提交
496
        # Iterate through the ops, and if an op and the optimize ops
497
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
498
        # append it into the sub program.
T
typhoonzero 已提交
499 500 501

        global_ops = []

Y
wip  
yi.wu 已提交
502 503
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
504
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
505
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
506
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
507
            elif op not in lr_ops:
Q
Qiyang Min 已提交
508
                self._append_pserver_non_opt_ops(block, op)
509 510 511 512 513 514

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
515

Y
Yancey1989 已提交
516
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
517 518 519 520 521 522 523 524
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
525
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
526 527 528

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
529
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
530 531

            # clone ops
Y
Yancey1989 已提交
532 533
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
534
                # clone sub_block of op
Y
Yancey1989 已提交
535
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
536 537 538 539

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

540
        # append lr decay ops to the child block if exists
541
        lr_ops = self._get_lr_ops()
542 543
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
544
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
545 546
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
547
            optimize_blocks.append(lr_decay_block)
548
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
549
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
550
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
551 552
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
553

T
typhoonzero 已提交
554
        # append op to the current block
Q
qiaolongfei 已提交
555
        grad_to_block_id = []
Q
qiaolongfei 已提交
556
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
557
        for idx, opt_op in enumerate(opt_op_on_pserver):
558
            per_opt_block = pserver_program.create_block(pre_block_idx)
559
            optimize_blocks.append(per_opt_block)
560
            # append grad merging ops before clip and weight decay
561
            # cases may like:
T
typhoonzero 已提交
562
            # L2Decay op -> clip op -> optimize
563 564 565 566 567 568 569
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
570
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
571 572
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
573
                if ufind.is_connected(op, opt_op) and op not in global_ops:
574
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
575
                                           merged_var, lr_ops)
T
typhoonzero 已提交
576

W
Wu Yi 已提交
577 578
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
579
        # append global ops
580
        if global_ops:
Q
qiaolongfei 已提交
581 582
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
583
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
584
            for glb_op in global_ops:
X
Xi Chen 已提交
585
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
586
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
587

588
        # process distributed lookup_table
Q
qiaolongfei 已提交
589
        prefetch_var_name_to_block_id = []
590 591
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
592
            table_opt_block = self._create_table_optimize_block(
593
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
594
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
595
            prefetch_var_name_to_block_id = self._create_prefetch_block(
596
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
597 598
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
599

T
tangwei12 已提交
600 601
            pserver_program._distributed_lookup_table = self.table_name

602 603 604
        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
605
            assert len(prefetch_var_name_to_block_id) > 0
606
        else:
Q
qiaolongfei 已提交
607
            assert len(prefetch_var_name_to_block_id) == 0
608

609
        attrs = {
610
            "optimize_blocks": optimize_blocks,
611 612 613
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
614
            "grad_to_block_id": grad_to_block_id,
615 616 617 618
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
619
            attrs['checkpint_block_id'] = checkpoint_block_id
620

T
typhoonzero 已提交
621 622 623 624 625
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
626
            attrs=attrs)
627

T
tangwei12 已提交
628
        # add distributed attrs
T
tangwei12 已提交
629
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
630
            endpoint)
631

W
Wu Yi 已提交
632
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
633 634
        return pserver_program

635 636 637 638
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
639 640 641 642
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
643 644 645 646 647

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
648 649
            startup_program (Program): if pass None, will use
                default_startup_program
650

Y
yi.wu 已提交
651 652
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
653 654
        """
        s_prog = Program()
655 656 657 658
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
659
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
660 661 662 663 664 665 666 667 668 669 670
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
671
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
672
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
673
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
674 675 676 677
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
678
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
679 680
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
681 682 683 684 685 686 687 688 689 690
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
691 692

            if op_on_pserver:
693 694 695
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
696 697 698
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
699
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
700 701 702 703
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
704
                    attrs=op.all_attrs())
705 706

        # add slice vars
T
tangwei12 已提交
707
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
708

T
typhoonzero 已提交
709 710
        return s_prog

T
tangwei12 已提交
711 712 713
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
714
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
715 716
            orig_var_name, block_name, _ = self._get_varname_parts(param)
            if not block_name:
717 718
                continue

T
tangwei12 已提交
719
            block_idx = int(block_name.split(block_suffix)[1])
720 721 722 723 724 725
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
726
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
727

T
tangwei12 已提交
728
        return slice_vars_and_attrs
729

730 731
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
732 733 734 735 736 737 738 739 740
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
741
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
793
    def _init_splited_vars(self):
Y
yi.wu 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
817
        if self.config.slice_var_up:
Y
yi.wu 已提交
818 819
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
820 821 822
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
823
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
824 825
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
826 827 828
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
829 830 831 832
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
833 834
        assert (len(grad_blocks) == len(param_blocks))

835
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
836 837
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
838
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
839 840 841 842
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
843
        # dict(grad_splited_var -> param_splited_var)
844
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
845 846 847 848
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
849
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
850 851

        # create mapping of endpoint -> split var to create pserver side program
852
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
853 854 855 856 857 858 859 860 861
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

862
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
863 864
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
865
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
866 867 868 869 870 871 872 873 874
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
875 876 877 878 879 880 881 882 883

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

884
                    lookup_table_op_index = list(all_ops).index(op)
885 886 887
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
888
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
889
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
890 891 892 893 894 895
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
896
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
897 898 899 900
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
901 902

                    # insert split_ids_op
W
Wu Yi 已提交
903
                    program.global_block()._insert_op(
904
                        index=lookup_table_op_index,
905 906 907 908 909 910 911
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
912
                        outputs={"Out": prefetch_input_vars})
913 914

                    # insert prefetch_op
W
Wu Yi 已提交
915
                    program.global_block()._insert_op(
916
                        index=lookup_table_op_index + 1,
917
                        type="prefetch",
Q
qiaolongfei 已提交
918 919
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
920
                        attrs={
921
                            "epmap": pserver_endpoints,
922 923 924
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
925
                        })
926 927

                    # insert concat_op
W
Wu Yi 已提交
928
                    program.global_block()._insert_op(
929 930 931 932 933 934 935
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
936
                            'X': prefetch_output_vars
937
                        },
938 939 940 941 942
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
943
                        })
944 945

                    # delete lookup_table_op
946
                    delete_ops(program.global_block(), [op])
947 948 949
                    # break for loop
                    break

Y
Yancey1989 已提交
950
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
951
        # 2. add split_ids_op and send_op to send gradient to pservers
952 953
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
954
        table_grad_name = grad_var_name(self.table_name)
955 956 957 958
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
959
                program.global_block()._insert_op(
960 961 962 963 964
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
965
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
966
                program.global_block()._insert_op(
967
                    index=op_index + 2,
968
                    type="send",
969
                    inputs={'X': self.trainer_side_table_grad_list},
970
                    outputs={'Out': []},
Y
Yancey1989 已提交
971
                    attrs={
972
                        "sync_mode": True,
Y
Yancey1989 已提交
973 974 975
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
976 977 978 979 980 981
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1010 1011

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1012
                                     pre_block_idx, grad_to_block_id):
1013 1014
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1015 1016
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1017

T
tangwei12 已提交
1018
        zero_dim = int(
T
tangwei12 已提交
1019 1020 1021 1022
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1023 1024
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1025
            shape=table_shape,
Y
Yancey1989 已提交
1026 1027 1028
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1029 1030
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1031
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1032
            self.origin_program.global_block().vars[grad_var_name(
1033
                self.table_name)])
1034 1035 1036 1037

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1038 1039
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1040
        ][0]
Q
qiaolongfei 已提交
1041
        table_opt_block = pserver_program.create_block(pre_block_idx)
1042

1043 1044 1045
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1046
            pserver_side_table_grad_list = [
1047 1048 1049 1050 1051 1052 1053 1054 1055
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1056
            # append sum op for pserver_side_table_grad_list
1057 1058
            table_opt_block.append_op(
                type="sum",
1059
                inputs={"X": pserver_side_table_grad_list},
1060 1061
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1062 1063
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1064
            origin_grad_name = grad_var.name
1065 1066
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1067 1068
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1069
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1070
            grad_var = pserver_program.global_block()._rename_var(
1071
                origin_grad_name, splited_grad_name)
1072 1073 1074 1075 1076 1077 1078 1079 1080

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1081
        # only support sgd now
1082 1083 1084 1085
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1086
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1087

1088 1089 1090
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1091 1092
        return table_opt_block

T
tangwei12 已提交
1093 1094 1095 1096 1097 1098
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1099
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1100
            name="kLookupTablePath",
T
tangwei12 已提交
1101 1102
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1103

T
tangwei12 已提交
1104
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1105
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1106 1107 1108 1109
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1110
            attrs={'file_path': "none"})
T
tangwei12 已提交
1111 1112 1113

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1114 1115 1116 1117 1118
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1119
        Create vars for each split.
T
typhoonzero 已提交
1120 1121
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1122 1123 1124 1125
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1126
        Returns:
1127
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1128
                from original var name to each var split.
T
typhoonzero 已提交
1129
        """
1130 1131

        # varname->[(block_id, current_block_size)]
1132
        block_map = collections.OrderedDict()
1133

1134
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1135 1136
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1137
            if varname not in block_map:
T
typhoonzero 已提交
1138
                block_map[varname] = []
1139
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1140

M
minqiyang 已提交
1141
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1142
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1143
            if len(splited) == 1:
1144
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1145 1146
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1147
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1148 1149 1150 1151 1152
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1153
                continue
T
typhoonzero 已提交
1154
            var_mapping[varname] = []
T
typhoonzero 已提交
1155 1156 1157 1158
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1159

T
typhoonzero 已提交
1160
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1161
                size = block[1]
M
minqiyang 已提交
1162
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1163 1164 1165
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1166
                new_var_name = ""
1167
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1168 1169 1170 1171 1172
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1173
                var = program.global_block().create_var(
T
typhoonzero 已提交
1174 1175
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1176
                    dtype=orig_var.dtype,
1177
                    type=orig_var.type,
T
typhoonzero 已提交
1178
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1179
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1180
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1181
        return var_mapping
T
done  
typhoonzero 已提交
1182

W
Wu Yi 已提交
1183
    def _create_splited_vars(self, source_var, block, tag):
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1194 1195 1196 1197 1198 1199
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1200
            persistable=persistable)
T
done  
typhoonzero 已提交
1201

Y
Yancey1989 已提交
1202
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1203 1204 1205 1206
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1207
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1217
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1227

T
typhoonzero 已提交
1228 1229 1230 1231
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1232
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1255 1256
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1257
        orig_var_name = ""
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1268
        else:
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1296
        else:
1297 1298 1299 1300 1301 1302
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1303
            for i in range(self.trainer_num):
1304 1305 1306 1307 1308 1309 1310
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1311 1312
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1313 1314 1315 1316 1317 1318 1319 1320
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1321

1322
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1323
                            grad_to_block_id, origin_program, merged_var):
1324
        program = optimize_block.program
T
typhoonzero 已提交
1325
        pserver_block = program.global_block()
1326
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1327

T
typhoonzero 已提交
1328 1329
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1339
        for key in opt_op.input_names:
T
typhoonzero 已提交
1340 1341
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1358
            elif key == "Param":
W
Wu Yi 已提交
1359
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1360 1361
                if not param_block:
                    return
T
typhoonzero 已提交
1362
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1363
                    name=param_block.name,
T
typhoonzero 已提交
1364
                    persistable=True,
T
typhoonzero 已提交
1365 1366 1367
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1368
            elif key == "LearningRate":
1369
                # learning rate variable has already be created by non-optimize op,
1370
                # don't create it once again.
1371
                lr_varname = opt_op.input(key)[0]
1372
                if lr_varname in pserver_block.vars:
1373 1374 1375 1376 1377 1378 1379 1380 1381
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1382

T
typhoonzero 已提交
1383
        for key in opt_op.input_names:
1384
            new_shape = None
W
Wu Yi 已提交
1385
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1386
                continue
1387
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1388 1389 1390 1391
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1392
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1393 1394 1395 1396 1397
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1398

1399
        # change output's ParamOut variable
1400 1401
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1402
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1403

1404
        optimize_block.append_op(
T
typhoonzero 已提交
1405 1406
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1407
            outputs=outputs,
G
gongweibao 已提交
1408
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1409

1410 1411
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1412
        for _, g in six.iteritems(var_dict):
1413 1414 1415 1416 1417 1418
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1419 1420 1421
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1422
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1423 1424 1425 1426
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1427
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1428 1429 1430

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1431
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1432 1433 1434 1435
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1436
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1437

Y
Yancey1989 已提交
1438
        return block.append_op(
G
gongweibao 已提交
1439
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1440 1441

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1442
        program = optimize_block.program
1443
        # Append the ops for parameters that do not need to be optimized/updated
1444 1445
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1446
        for key, varlist in six.iteritems(inputs):
1447 1448
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1449
            for var in varlist:
1450 1451 1452 1453 1454 1455
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1456
                elif var.name not in program.global_block().vars:
1457
                    program.global_block().create_var(
T
typhoonzero 已提交
1458 1459 1460 1461 1462
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1463 1464
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1465
        for key, varlist in six.iteritems(outputs):
1466 1467 1468
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1469 1470 1471 1472
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1473
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1474
                    program.global_block()._clone_variable(var)
1475

Y
Yancey1989 已提交
1476
        return optimize_block.append_op(
T
typhoonzero 已提交
1477
            type=opt_op.type,
T
typhoonzero 已提交
1478 1479
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1480
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1481

1482 1483 1484 1485
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1486 1487
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1488 1489 1490 1491 1492 1493
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1494 1495
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1496 1497 1498 1499 1500 1501
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1502
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1503 1504
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1505 1506 1507 1508 1509 1510 1511
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1512
        if op.input("Param")[0] in param_names:
1513 1514 1515
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1516
                param = op.input("Param")[0]
T
typhoonzero 已提交
1517
                if same_or_split_var(n, param) and n != param:
1518 1519 1520
                    return True
            return False

T
typhoonzero 已提交
1521
    def _get_input_map_from_op(self, varmap, op):
1522
        """Returns a dict from op input name to the vars in varmap."""
1523
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1535
        """Returns a dict from op output name to the vars in varmap."""
1536
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1546 1547 1548 1549 1550 1551

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1552
            if self._is_optimizer_op(op):
1553 1554 1555 1556
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1557
        block = self.origin_program.global_block()
1558 1559 1560 1561 1562
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1563

1564 1565 1566 1567 1568
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1569
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1570 1571 1572 1573 1574 1575
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1576 1577
                    # we only need to append op for once
                    break
1578
        return lr_ops
Y
Yancey1989 已提交
1579

W
Wu Yi 已提交
1580 1581 1582 1583 1584
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1585 1586
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1587 1588 1589
            return True
        return False

Y
Yancey1989 已提交
1590
    def _get_optimize_pass(self):
1591
        """
1592
        Get optimizer operators, parameters and gradients from origin_program
1593 1594 1595 1596
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1597 1598 1599
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1600
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1601
        for op in block.ops:
W
Wu Yi 已提交
1602
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1603
                opt_ops.append(op)
1604 1605 1606 1607 1608
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1609 1610
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1611 1612 1613 1614
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1615 1616 1617
            else:
                pass
        return opt_ops, params_grads