random.py 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

C
cc 已提交
17
from ..fluid import core
18
from ..fluid.framework import in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
C
cc 已提交
19
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
S
silingtong123 已提交
23

24
__all__ = [
L
Leo Chen 已提交
25
    'bernoulli',
P
pangyoki 已提交
26
    'multinomial',
27 28
    'standard_normal',
    'normal',
P
pangyoki 已提交
29
    'uniform',
30 31 32
    'randn',
    'rand',
    'randint',
33
    'randperm',
34
]
S
silingtong123 已提交
35 36


L
Leo Chen 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

        import paddle

        paddle.disable_static()

        x = paddle.rand([2, 3])
        print(x.numpy())
        # [[0.11272584 0.3890902  0.7730957 ]
        # [0.10351662 0.8510418  0.63806665]]

        out = paddle.bernoulli(x)
        print(out.numpy())
        # [[0. 0. 1.]
        # [0. 0. 1.]]

    """

    if in_dygraph_mode():
        return core.ops.bernoulli(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
    return out


P
pangyoki 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a Multinomical
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

        import paddle

        paddle.disable_static()

        x = paddle.rand([2,4])
        print(x.numpy())
        # [[0.7713825  0.4055941  0.433339   0.70706886]
        # [0.9223313  0.8519825  0.04574518 0.16560672]]

        out1 = paddle.multinomial(x, num_samples=5, replacement=True)
        print(out1.numpy())
        # [[3 3 1 1 0]
        # [0 0 0 0 1]]

        # out2 = paddle.multinomial(x, num_samples=5)
        # OutOfRangeError: When replacement is False, number of samples
        #  should be less than non-zero categories

        out3 = paddle.multinomial(x, num_samples=3)
        print(out3.numpy())
        # [[0 2 3]
        # [0 1 3]]

    """

    if in_dygraph_mode():
        return core.ops.multinomial(x, 'num_samples', num_samples,
                                    'replacement', replacement)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
    helper.append_op(
        type='multinomial',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={'num_samples': num_samples,
               'replacement': replacement})
    return out


154
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
155 156 157 158 159
    """
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.

    Args:
160
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
161 162 163 164
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
165 166
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
167
            is 1.0.
168 169
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
170 171 172
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
173
        name (str, optional): The default value is None. Normally there is no
174 175 176 177 178 179 180
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
181 182 183
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

184 185 186 187
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
188 189
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
190 191 192 193
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
194
        shape = utils.convert_shape_to_list(shape)
195 196 197 198 199
        return core.ops.gaussian_random('shape', shape, 'mean',
                                        float(mean), 'std',
                                        float(std), 'seed', seed, 'dtype',
                                        dtype)

200
    check_shape(shape, op_type_for_check)
201 202 203 204 205 206 207 208 209 210
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
211
    utils.get_shape_tensor_inputs(
212 213
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

214
    helper = LayerHelper('gaussian', **locals())
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
232
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
233 234 235 236
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
237
        dtype (str|np.dtype, optional): The data type of the output Tensor.
238 239 240
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

            # example 1: attr shape is a list which doesn't contain Tensor.
257
            out1 = paddle.standard_normal(shape=[2, 3])
258 259 260 261
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
262 263 264
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
265 266 267 268 269 270 271 272
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
273 274 275
            shape_tensor = paddle.to_tensor([2, 3])
            result_3 = paddle.standard_normal(shape_tensor)

276 277 278 279
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
280
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329


randn = standard_normal


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

330
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
331 332 333
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

334
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
    if not in_dygraph_mode():
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
353
            check_shape(shape, 'normal')
354 355 356 357 358 359 360 361 362 363 364 365 366 367

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
368
        return gaussian(shape=shape, mean=mean, std=std, name=name)
369 370 371 372 373 374 375

    out = out * std + mean
    if not in_dygraph_mode():
        out.stop_grediant = True
    return out


376
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
    ::
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
394 395 396 397
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import paddle

            paddle.disable_static()

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
            result_1 = paddle.tensor.random.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]

            # example 2:
            # attr shape is a list which contains Tensor.
            dim_1 = paddle.fill_constant([1], "int64", 2)
            dim_2 = paddle.fill_constant([1], "int32", 3)
            result_2 = paddle.tensor.random.uniform(shape=[dim_1, dim_2])
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
442
            shape_tensor = paddle.to_tensor([2, 3])
P
pangyoki 已提交
443 444 445 446 447 448 449 450
            result_3 = paddle.tensor.random.uniform(shape_tensor)
            # if shape_tensor's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]


    """
451 452 453 454
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
455 456
                "uniform/rand only supports [float32, float64], but the default dtype is {}".
                format(dtype))
457

P
pangyoki 已提交
458 459 460 461
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
462
        shape = utils.convert_shape_to_list(shape)
P
pangyoki 已提交
463 464 465 466
        return core.ops.uniform_random('shape', shape, 'min',
                                       float(min), 'max',
                                       float(max), 'seed', seed, 'dtype', dtype)

467 468
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
469 470 471

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
472
    utils.get_shape_tensor_inputs(
473
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
P
pangyoki 已提交
474

475
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
476 477 478 479 480 481 482
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
    return out


483
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
484
    """
485 486 487
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
488 489

    Args:
490
        low (int): The lower bound on the range of random values to generate.
491 492
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
493
        high (int, optional): The upper bound on the range of random values to
494 495
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
496
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
497 498 499 500
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
501
        dtype (str|np.dtype, optional): The data type of the
502 503
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
504
        name (str, optional): The default value is None.  Normally there is no
505 506
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
507 508

    Returns: 
509 510
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
511 512 513

    Examples:
        .. code-block:: python
514

515
            import paddle
516

517
            paddle.disable_static()
518

519 520
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
521
            out1 = paddle.randint(low=-5, high=5, shape=[3])
522 523 524 525
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
526 527 528
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2], dtype="int32")
529 530 531 532 533
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
534 535 536 537

            shape_tensor = paddle.to_tensor(3)
            result_3 = paddle.randint(low=-5, high=5, shape=shape_tensor)

538 539 540 541
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
542
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
543 544 545 546 547
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
548
            out5 = paddle.randint(10)
549
            # [7]  # random
S
silingtong123 已提交
550

551 552
    """
    if high is None:
553 554 555 556
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
557 558
        high = low
        low = 0
S
silingtong123 已提交
559 560
    if dtype is None:
        dtype = 'int64'
561 562
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
563 564

    if in_dygraph_mode():
565
        shape = utils.convert_shape_to_list(shape)
566 567
        return core.ops.randint('shape', shape, 'low', low, 'high', high,
                                'seed', 0, 'dtype', dtype)
S
silingtong123 已提交
568

569
    check_shape(shape, 'randint')
570 571
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
572 573 574 575
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

576 577
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
578
    utils.get_shape_tensor_inputs(
579 580 581 582 583 584
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
silingtong123 已提交
585
    return out
C
cc 已提交
586 587


588
def randperm(n, dtype="int64", name=None):
C
cc 已提交
589
    """
590 591
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
592 593

    Args:
594 595
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
596 597
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
598
        name (str, optional): The default value is None. Normally there is no
599 600
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
601 602

    Returns:
603 604
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
605 606 607 608

    Examples:
        .. code-block:: python

609
            import paddle
C
cc 已提交
610

611
            paddle.disable_static()
C
cc 已提交
612

613
            out1 = paddle.randperm(5)
614
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
615

616
            out2 = paddle.randperm(7, 'int32')
617
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
618 619
 
    """
620 621 622 623 624
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
625 626 627

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
628 629
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
630 631

    helper = LayerHelper("randperm", **locals())
632 633 634 635
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
636
    out.stop_gradient = True
C
cc 已提交
637
    return out
X
Xing Wu 已提交
638 639


640
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
641
    """
642 643
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
644 645

    Args:
646
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
647 648 649 650
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
651
        dtype (str|np.dtype, optional): The data type of the output Tensor.
652 653 654
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
655
        name (str, optional): The default value is None. Normally there is no
656 657
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
658

X
Xing Wu 已提交
659
    Returns:
660 661
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
662 663 664 665

    Examples:
        .. code-block:: python

666
            import paddle
667

668 669
            paddle.disable_static()
            # example 1: attr shape is a list which doesn't contain Tensor.
670
            out1 = paddle.rand(shape=[2, 3])
671 672 673 674
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
675 676 677
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.rand(shape=[dim1, dim2, 2])
678 679 680 681 682 683 684 685
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
686 687 688
            shape_tensor = paddle.to_tensor([2, 3])
            result_3 = paddle.rand(shape_tensor)

689 690
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
691 692

    """
693
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)