control_flow.py 66.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

16 17
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
18
from .. import core
19
from ..framework import Program, Variable, Operator
20
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
21
from ..initializer import force_init_on_cpu
22
from .ops import logical_and, logical_not, logical_or
Y
yuyang18 已提交
23
import numpy
24
import warnings
25
import six
26
from functools import reduce
D
dzhwinter 已提交
27

Q
QI JUN 已提交
28
__all__ = [
Y
ying 已提交
29
    'While',
30
    'Switch',
Y
ying 已提交
31 32 33 34
    'increment',
    'array_write',
    'create_array',
    'less_than',
35
    'equal',
Y
ying 已提交
36 37 38 39 40 41 42 43
    'array_read',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
44
    'is_empty',
D
dzhwinter 已提交
45 46
]

Y
Yu Yang 已提交
47

48
def split_lod_tensor(input, mask, level=0):
49 50 51 52
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
53 54
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
55 56 57 58 59

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
60
        level(int): The specific lod level to split.
61 62

    Returns:
Q
qiaolongfei 已提交
63 64 65 66
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
67 68 69 70

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
71
          x = fluid.layers.data(name='x', shape=[1])
72 73
          x.persistable = True

Q
qiaolongfei 已提交
74
          y = fluid.layers.data(name='y', shape=[1])
75 76
          y.persistable = True

Q
qiaolongfei 已提交
77
          out_true, out_false = fluid.layers.split_lod_tensor(
78
                input=x, mask=y, level=level)
79

80
    """
81
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
82 83
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
84 85 86 87 88 89 90 91 92 93 94 95
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


96
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
97 98 99 100 101
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
102 103 104
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
105 106 107 108 109 110 111

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
112
        level(int): The specific lod level to merge.
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
132
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
133
    out = helper.create_tmp_variable(dtype=in_true.dtype)
134 135 136 137 138 139 140 141 142 143 144
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
145 146 147 148 149 150 151
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
152 153
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
154 155 156 157 158 159 160 161 162 163
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
164 165 166 167 168 169 170 171 172
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
173
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
174 175
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
176 177

    Returns:
Y
yangyaming 已提交
178
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
179

Y
Yan Chunwei 已提交
180

Y
Yan Chunwei 已提交
181
    Examples:
Y
Yan Chunwei 已提交
182

Y
Yan Chunwei 已提交
183 184
        .. code-block:: python

Y
Yan Chunwei 已提交
185 186 187
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
188 189
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
190
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
191 192
    helper.append_op(
        type='print',
Y
yangyaming 已提交
193
        inputs={'In': input},
Y
Yan Chunwei 已提交
194 195 196 197 198 199 200 201
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
202 203 204
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
205 206 207
    return out


Y
Yu Yang 已提交
208 209
class BlockGuard(object):
    """
210 211 212 213
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
214 215
    """

216 217
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
218
            raise TypeError("BlockGuard takes a program")
219
        self.main_program = main_program
Y
Yu Yang 已提交
220 221

    def __enter__(self):
222
        self.main_program.create_block()
Y
Yu Yang 已提交
223 224

    def __exit__(self, exc_type, exc_val, exc_tb):
225
        self.main_program.rollback()
Y
Yu Yang 已提交
226 227 228 229 230
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
231
class ParallelDo(object):
232
    """
L
Luo Tao 已提交
233 234
    ParallelDo is used to represent multi-thread data parallel processing.

L
Luo Tao 已提交
235
    Its vanilla implementation can be shown as the following (:math:`|` means
L
Luo Tao 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    single thread and :math:`||||` means multiple threads)

    .. code-block:: text

      In the forward pass
        |      Split input onto different devices
        |      Copy parameter onto different devices
        ||||   Compute forward pass in parallel
        |      Merge output from different devices

      In the backward pass
        |      Split output@grad onto different devices
        ||||   Compute backward pass in parallel
        |      accumulate param@grad from different devices to the first device
        |      Merge input@grad from different devices
L
Luo Tao 已提交
251
        |      Copy param@grad to the place of parallel_do_op
L
Luo Tao 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

    Examples:

    .. code-block:: python

      images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
      label = fluid.layers.data(name='label', shape=[1], dtype='int64')

      # ParallelDo version & Single-thread version
      if thread_num > 1:
          places = fluid.layers.get_places(thread_num)
          pd = fluid.layers.ParallelDo(places)
          with pd.do():
              images = pd.read_input(images)
              label = pd.read_input(label)
              predict = cnn_model(images)
              cost = fluid.layers.cross_entropy(input=predict, label=label)

              avg_cost = fluid.layers.mean(x=cost)
              pd.write_output(avg_cost)

          avg_cost = pd()
          avg_cost = fluid.layers.mean(avg_cost)
      else:
          predict = cnn_model(images)
          cost = fluid.layers.cross_entropy(input=predict, label=label)
          avg_cost = fluid.layers.mean(x=cost)

    .. warning::
281

L
Luo Tao 已提交
282
       It will be soon deprecated, please use ParallelExecutor instead.
Y
Yang Yang 已提交
283 284
    """

Y
Yang Yang 已提交
285
    def __init__(self, places, use_nccl=False, name=None):
286 287 288
        warnings.warn(
            "API ParallelDo is deprecated since 0.15.0. Please use ParallelExecutor instead.",
            Warning)
Y
Yang Yang 已提交
289 290 291 292 293
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
294
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
318
        return var
Y
Yang Yang 已提交
319 320 321 322 323 324 325 326 327 328

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
329
        params = list()
Y
Yang Yang 已提交
330 331 332 333 334 335 336 337
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
338 339 340 341 342

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
343
        params = list(set(params))
Y
Yang Yang 已提交
344 345 346

        return [parent_block.var(name) for name in params]

347
    def _complete_op(self):
Y
Yang Yang 已提交
348 349 350 351 352 353 354
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
355 356 357 358 359 360 361 362 363 364
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
365
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
366
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
367 368 369 370 371 372 373 374

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
375
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
376
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
377 378
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
379 380 381 382 383 384 385


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
386 387
    """

Y
Yu Yang 已提交
388
    def __init__(self, rnn):
Y
Yang Yang 已提交
389 390 391 392
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
393 394 395 396
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
397
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
398 399

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
400 401
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
402
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
403
        self.rnn._complete_op()
Y
Yang Yang 已提交
404 405
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
406 407 408 409


class StaticRNNMemoryLink(object):
    """
410 411 412 413
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
414 415 416 417 418 419 420 421 422


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
423 424 425 426 427 428 429 430 431
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
432 433 434 435 436 437
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
438 439 440 441
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

442 443
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
444 445 446 447 448 449 450 451
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
452
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
453 454 455 456 457

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

458 459 460 461 462 463 464
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
465 466 467 468 469 470 471 472 473
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
474 475
        self._assert_in_rnn_block_('memory')
        if init is None:
476
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
477
                raise ValueError(
478
                    "if init is None, memory at least need shape and batch_ref")
479
            parent_block = self._parent_block()
Y
Yu Yang 已提交
480 481
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
482
            boot_var = parent_block.create_var(
483 484
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
485
                dtype=batch_ref.dtype,
486
                persistable=False)
Y
Yu Yang 已提交
487 488

            parent_block.append_op(
489 490
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
491 492 493
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
494
                    'shape': boot_var.shape,
F
fengjiayi 已提交
495
                    'dtype': boot_var.dtype,
496 497
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
498 499 500 501 502
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
503
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
504
                dtype=init.dtype,
Y
Yu Yang 已提交
505 506 507 508 509 510 511 512 513 514
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
515 516
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
517 518 519
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
520
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
521 522 523 524 525 526 527 528
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
529
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
530 531 532 533
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
534
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
535

536
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
537 538
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
539
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
540 541 542 543 544 545 546 547 548 549 550 551

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

552
    def _parent_block(self):
553
        prog = self.helper.main_program
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

569
    def _complete_op(self):
570 571
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
572
        parent_block = self._parent_block()
Y
Yu Yang 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
606
        for _, mem in six.moves.iteritems(self.memories):
Y
Yu Yang 已提交
607 608 609 610
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
611
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
612 613 614 615 616

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
617
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
633
                'sub_block': rnn_block
Y
Yu Yang 已提交
634
            })
Y
Yu Yang 已提交
635 636


Y
Yang Yang(Tony) 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
652
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
653 654 655 656
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
657 658 659 660 661 662 663 664 665 666
    """
    while loop control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str): The name of this layer.

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
667 668 669
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
670

X
Xin Pan 已提交
671 672 673 674 675 676 677
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
678 679
    """

Y
Yang Yang(Tony) 已提交
680 681 682 683
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

684 685
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
686 687 688 689
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
690
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
691 692 693 694 695 696 697 698
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

699
    def _complete(self):
Y
Yang Yang(Tony) 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
728 729 730 731
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
732 733 734 735
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
736
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
737 738


739
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
740 741 742
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
743
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
744 745 746
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
747 748 749 750

        .. code-block:: text

            x is a LoDTensor:
751 752
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
753 754
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
755 756 757
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
758

Y
yangyaming 已提交
759 760 761 762 763 764 765 766 767
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
768 769 770 771

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
772 773
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
774 775 776 777 778 779 780 781

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
782
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
783
            out = layers.lod_rank_table(x=x, level=0)
784
    """
Y
Yu Yang 已提交
785 786 787
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
788
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
789 790 791 792 793 794
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
795 796


Y
yuyang18 已提交
797
@templatedoc()
798
def max_sequence_len(rank_table):
Y
yuyang18 已提交
799 800 801 802 803 804 805 806
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
807 808

    Args:
Y
yuyang18 已提交
809
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
810 811

    Returns:
Y
yuyang18 已提交
812
        ${out_comment}.
F
fengjiayi 已提交
813 814 815 816 817 818 819 820 821 822
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


823
def lod_tensor_to_array(x, table):
824
    """
F
fengjiayi 已提交
825 826
    Convert a LoDTensor to a LoDTensorArray.

827 828 829 830 831
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
832
    Users should not use it directly.
833 834

    Args:
F
fengjiayi 已提交
835
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
836 837
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
838
                                descending order. It is generally generated
F
fengjiayi 已提交
839
                                by `layers.lod_rank_table()` API.
840 841

    Returns:
F
fengjiayi 已提交
842
        Variable: The LoDTensorArray that has been converted from the input tensor.
843 844 845 846 847 848 849

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
850
    """
851 852
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
853
        name=unique_name.generate("lod_tensor_to_array"),
854
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
855
        dtype=x.dtype)
856 857 858 859 860 861 862 863
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


864
def array_to_lod_tensor(x, table):
865
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
866 867

    Args:
868
        x (Variable|list): The lod tensor array to be converted to a tensor.
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
884
    """
885
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
886
    tmp = helper.create_tmp_variable(dtype=x.dtype)
887 888 889 890 891 892 893 894
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


895
def increment(x, value=1.0, in_place=True):
896 897
    """
    This function performs an operation that increments each value in the
898 899 900 901 902 903 904 905 906
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
907
        Variable: The elementwise-incremented object.
908 909 910 911 912 913

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
914
    """
Y
Yu Yang 已提交
915
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
916
    if not in_place:
F
fengjiayi 已提交
917
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
918 919
    else:
        out = x
Y
Yu Yang 已提交
920 921 922
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
923
        outputs={'Out': [out]},
924
        attrs={'step': float(value)})
Y
Yang Yu 已提交
925
    return out
Y
Yu Yang 已提交
926 927


928
def array_write(x, i, array=None):
929 930 931 932 933
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
934 935 936

    Args:
        x (Variable|list): The input tensor from which the data will be read.
937 938 939 940 941 942 943 944
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

945
    Returns:
946
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
947 948

    Examples:
D
dzhwinter 已提交
949
        .. code-block:: python
950 951 952 953

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
954
    """
Y
Yu Yang 已提交
955 956 957 958 959
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
960
            dtype=x.dtype)
Y
Yu Yang 已提交
961 962 963 964 965 966 967 968
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


969
def create_array(dtype):
970
    """
Q
qiaolongfei 已提交
971
    **Create LoDTensorArray**
972

Q
qiaolongfei 已提交
973 974
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
975 976

    Args:
Q
qiaolongfei 已提交
977
        dtype (int|float): The data type of the elements in the lod_tensor_array.
978 979

    Returns:
980
        Variable: The lod_tensor_array variable storing the elements of data type.
981 982 983 984 985 986 987

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
988 989 990 991 992 993 994
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
995 996
@templatedoc()
def less_than(x, y, force_cpu=None, cond=None, **ignored):
997
    """
Y
yuyang18 已提交
998
    ${comment}
999

Y
yuyang18 已提交
1000 1001
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
1002 1003

    Args:
Y
yuyang18 已提交
1004 1005 1006
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1007 1008 1009
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1010
        ${out_comment}.
1011
    """
Y
Yang Yang(Tony) 已提交
1012 1013 1014 1015 1016
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

Y
yuyang18 已提交
1017 1018 1019 1020 1021 1022
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1023
    helper.append_op(
J
JiayiFeng 已提交
1024 1025 1026 1027
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1028
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1029 1030 1031
    return cond


1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1062
def array_read(array, i):
1063 1064
    """
    This function performs the operation to read the data in as an
1065
    LOD_TENSOR_ARRAY.
1066 1067 1068 1069 1070 1071

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1072

1073
        And:
1074

1075 1076 1077 1078 1079 1080
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1081
    Args:
1082 1083 1084
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1085 1086
    Returns:
        Variable: The tensor type variable that has the data written to it.
1087

K
kavyasrinet 已提交
1088
    Examples:
1089 1090
        .. code-block:: python

K
kavyasrinet 已提交
1091 1092 1093
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1094
    """
Y
Yu Yang 已提交
1095 1096 1097 1098 1099
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1100
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1101 1102 1103 1104 1105 1106
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1107 1108


1109
def shrink_memory(x, i, table):
1110
    """
Y
yuyang18 已提交
1111
    This function creates an operator to shrink rnn memory using the RankTable
1112
    as mentioned in the input parameter.
Y
yuyang18 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1133
    """
Y
Yang Yu 已提交
1134
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1135
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1136
    helper.append_op(
Y
Yang Yu 已提交
1137
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1138 1139 1140 1141 1142 1143
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1144 1145


1146
def array_length(array):
1147
    """
Q
qiaolongfei 已提交
1148
    **Get the Length of Input LoDTensorArray**
1149 1150

    This function performs the operation to find the length of the input
1151
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1152

1153 1154
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1155 1156 1157 1158 1159 1160 1161 1162
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1163
        .. code-block:: python
K
kavyasrinet 已提交
1164 1165 1166 1167 1168

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1169

1170
    """
Y
Yang Yu 已提交
1171 1172 1173 1174 1175 1176
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1177 1178 1179


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1180
    """
1181 1182 1183
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1184 1185 1186
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1228
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1229 1230 1231 1232
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1233
        self.is_scalar_condition = is_scalar_condition
1234
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1259
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1260 1261 1262 1263 1264
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1265
            if var_name in intermediate
Y
Yu Yang 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1278 1279 1280 1281 1282 1283 1284
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1285
    """
Q
qiaolongfei 已提交
1286 1287
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1288 1289 1290 1291

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1292

Q
qiaolongfei 已提交
1293
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1294 1295 1296 1297

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1298 1299 1300 1301

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1314
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1315 1316 1317
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1318 1319 1320

    """

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1350 1351
        """
        create a default case for this switch
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1420

X
improve  
Xin Pan 已提交
1421
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1422
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1423 1424
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1425 1426
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1427 1428
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1429 1430 1431 1432
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1433 1434 1435
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1436 1437 1438
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1439 1440 1441 1442
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1443
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1444 1445
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1446
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1458
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1459
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1460
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1461
                dtype=x.dtype)
Y
Yu Yang 已提交
1462 1463

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1464
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1465
                dtype=x.dtype)
Y
Yu Yang 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1484
    def _parent_block(self):
Y
Yu Yang 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1500
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1501 1502 1503 1504 1505
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1506 1507
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1508
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1509 1510 1511
            out_table.append(outside_out)

            # assign local var to outside
1512
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1513 1514 1515 1516

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1517
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1536
                    level=0))
Y
Yu Yang 已提交
1537
        return rlist
1538 1539 1540


class DynamicRNN(object):
Y
yuyang18 已提交
1541
    """
Y
yuyang18 已提交
1542 1543 1544
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
    """
1573 1574 1575 1576
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1577 1578
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1579 1580 1581 1582
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1583 1584
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
Y
yuyang18 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603
        """
        Mark a sequence as a dynamic RNN input.
        Args:
            x(Variable): The input sequence.

        Returns:
            The current timestep in the input sequence.

        """
1604 1605 1606
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1607
                "step_input() can only take a Variable as its input.")
1608 1609 1610
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1611
                name=unique_name.generate('lod_rank_table'),
1612 1613 1614 1615 1616 1617 1618
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1619 1620
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1631 1632
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1633 1634

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1635
            name=unique_name.generate('dynamic_rnn_input_array'),
1636 1637 1638 1639 1640 1641 1642 1643
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1644
        return array_read(array=input_array, i=self.step_idx)
1645

Y
yangyaming 已提交
1646
    def static_input(self, x):
Y
yuyang18 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1665
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1675 1676
    @contextlib.contextmanager
    def block(self):
Y
yuyang18 已提交
1677 1678 1679 1680
        """
        The block for user to define operators in RNN. See the class docstring
        for more details.
        """
1681 1682
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1683 1684
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1685 1686 1687 1688
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1689
            increment(x=self.step_idx, value=1.0, in_place=True)
1690 1691

            for new_mem, mem_array in self.mem_link:
1692 1693
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1694 1695 1696 1697 1698
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1699 1700 1701 1702 1703

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1704
                    x=each_array, table=self.lod_rank_table))
1705 1706

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1707 1708 1709
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1710
        if self.status != DynamicRNN.AFTER_RNN:
1711 1712
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1713 1714 1715 1716 1717
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1718 1719 1720 1721 1722 1723
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1724
        """
Y
yuyang18 已提交
1725
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

            shape(list|tuple): The memory shape. NOTE the shape does not contain
            batch_size.

            value(float): the initalized value.

            need_reorder(bool): True if the initialized memory depends on the
            input sample.

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
            the memory variable.

        """
1788 1789 1790 1791 1792 1793
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1794 1795 1796 1797 1798 1799 1800 1801
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1802
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1813
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1814
                name=unique_name.generate('dynamic_rnn_mem_array'),
1815 1816 1817 1818
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1819
                inputs={'X': init_tensor,
1820 1821
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1822
            retv = array_read(array=mem_array, i=self.step_idx)
1823
            retv = shrink_memory(
1824
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1825 1826 1827 1828 1829 1830 1831 1832 1833
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1834
                name=unique_name.generate('mem_init'), dtype=dtype)
1835
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1836 1837
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890
        """
        mark the RNN output variables.

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1891 1892 1893 1894
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1895
                name=unique_name.generate("_".join(
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1914 1915


1916
@autodoc()
Y
Yang Yu 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1929 1930 1931 1932


def is_empty(x, cond=None, **ignored):
    """
F
fengjiayi 已提交
1933
    Test whether a Variable is empty.
1934 1935

    Args:
F
fengjiayi 已提交
1936
        x (Variable): The Variable to be tested.
1937
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
1938
                              of given 'x'. Default: None
1939 1940

    Returns:
F
fengjiayi 已提交
1941
        Variable: A bool scalar. True if 'x' is an empty Variable.
1942 1943 1944

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1945
                   not bool.
1946 1947 1948 1949

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1950 1951 1952
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond