backward_test.cc 33.8 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

Y
Yu Yang 已提交
17
#include <gtest/gtest.h>
18 19
#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_desc.h"
Y
Yu Yang 已提交
20
#include "paddle/framework/op_registry.h"
21
#include "paddle/framework/var_desc.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
23

Y
Yang Yu 已提交
24
USE_NO_KERNEL_OP(fill_constant);
Q
QI JUN 已提交
25

Y
Yu Yang 已提交
26 27 28
namespace paddle {
namespace framework {

D
dongzhihong 已提交
29 30
using DeviceContext = platform::DeviceContext;

Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44
class NoneOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {}
};

template <typename Place, typename T>
class NoneKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {}
};

Y
Yu Yang 已提交
45
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
46
 public:
Y
Yu Yang 已提交
47
  RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
48
      : OpProtoAndCheckerMaker(proto, op_checker) {
49 50 51
    AddInput("X", "Input X of Add");
    AddInput("b", "Bias of Add");
    AddOutput("Out", "Out of Add");
Y
Yu Yang 已提交
52 53 54 55
    AddComment("Add Op");
  }
};

56 57 58 59 60
class RowWiseAddGradMaker : public SingleGradOpDescMaker {
 public:
  using SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
61 62 63 64 65 66 67
  std::unique_ptr<OpDescBind> Apply() const override {
    auto grad_op = new OpDescBind();
    grad_op->SetInput(GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(GradVarName("X"), InputGrad("X"));
    grad_op->SetOutput(GradVarName("b"), InputGrad("b"));
    grad_op->SetType("rowwise_add_grad");
    return std::unique_ptr<OpDescBind>(grad_op);
68 69 70
  }
};

Y
Yu Yang 已提交
71 72 73 74
class MulOpMaker : public OpProtoAndCheckerMaker {
 public:
  MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
75 76
    AddInput("X", "A");
    AddInput("Y", "B");
Y
Yu Yang 已提交
77
    AddOutput("Out", "Out");
F
fengjiayi 已提交
78 79
    AddAttr<int>("x_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
    AddAttr<int>("y_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
Y
Yu Yang 已提交
80 81 82 83 84 85 86 87 88
    AddComment("Mul");
  }
};

class SigmoidOpMaker : public OpProtoAndCheckerMaker {
 public:
  SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X");
Y
Yu Yang 已提交
89
    AddOutput("Out", "Y");
Y
Yu Yang 已提交
90 91 92 93
    AddComment("Sigmoid");
  }
};

D
dongzhihong 已提交
94 95 96 97 98
class NoGradOpMaker : public OpProtoAndCheckerMaker {
 public:
  NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X input");
Y
Yu Yang 已提交
99
    AddOutput("Out", "Y output");
D
dongzhihong 已提交
100 101 102 103
    AddComment("NoGradOp, same input output. no Grad");
  }
};

D
dongzhihong 已提交
104
class FcOp : public operators::NetOp {
Y
Yu Yang 已提交
105
 public:
Y
Yu Yang 已提交
106 107
  FcOp(const std::string &type, const VariableNameMap &inputs,
       const VariableNameMap &outputs, const AttributeMap &attrs)
Y
Yu Yang 已提交
108
      : NetOp(type, inputs, outputs, attrs) {
Y
Yu Yang 已提交
109 110 111
    AppendOp(OpRegistry::CreateOp("mul",
                                  {{"X", {Input("X")}}, {"Y", {Input("W")}}},
                                  {{"Out", {Output("mul_result")}}}, {}));
112
    auto input_b = Inputs("b");
Y
Yu Yang 已提交
113
    std::string before_act = "mul_result";
114
    if (input_b.size() != 0) {
Y
Yu Yang 已提交
115
      AppendOp(OpRegistry::CreateOp(
116
          "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}},
Y
Yu Yang 已提交
117
          {{"Out", {Output("add_result")}}}, {}));
Y
Yu Yang 已提交
118 119 120
      before_act = "add_result";
    } else {
      auto out_varname = Output("add_result");
121 122
      if (out_varname != kEmptyVarName) {
        this->Rename(out_varname, kEmptyVarName);
Y
Yu Yang 已提交
123
      }
Y
Yu Yang 已提交
124
    }
Y
Yu Yang 已提交
125

Y
Yu Yang 已提交
126 127
    AppendOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
                                  {{"Out", {Output("Out")}}}, {}));
Y
Yu Yang 已提交
128 129 130 131 132 133 134 135 136 137 138
    CompleteAddOp(false);
  }
};

class FcOpMaker : public OpProtoAndCheckerMaker {
 public:
  FcOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("W", "w");
    AddInput("b", "b");
Y
Yu Yang 已提交
139 140
    AddOutput("mul_result", "").AsIntermediate();
    AddOutput("add_result", "").AsIntermediate();
Y
Yu Yang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    AddOutput("Out", "");
    AddComment("");
  }
};

class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
 public:
  ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("y", "y");
    AddOutput("z", "z");
    AddComment("");
  }
};

class FillZeroOpMaker : public OpProtoAndCheckerMaker {
 public:
  FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
D
dangqingqing 已提交
161 162
    AddInput("X", "x");
    AddOutput("Y", "out");
Y
Yu Yang 已提交
163 164 165
    AddComment("");
  }
};
Y
Yu Yang 已提交
166

D
dongzhihong 已提交
167
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
168
 public:
D
dongzhihong 已提交
169
  SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
Y
Yu Yang 已提交
170
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
171 172
    AddInput("X", "the input tensors of sum operator.").AsDuplicable();
    AddOutput("Out", "the output tensor of sum operator.");
Y
Yu Yang 已提交
173 174 175
    AddComment("");
  }
};
D
dongzhihong 已提交
176

F
fengjiayi 已提交
177 178 179 180 181 182 183 184 185 186 187 188
class MultInOutOpMaker : public OpProtoAndCheckerMaker {
 public:
  MultInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("H", "h");
    AddOutput("Y", "y");
    AddOutput("Z", "z");
    AddComment("");
  }
};

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
class MinusGradOpDescMaker : public GradOpDescMakerBase {
 public:
  using GradOpDescMakerBase::GradOpDescMakerBase;

  std::vector<std::unique_ptr<OpDescBind>> operator()() const override {
    std::vector<std::unique_ptr<OpDescBind>> retv;
    auto x_g = InputGrad("X");
    if (!x_g.empty()) {
      auto *op_desc = new OpDescBind();
      op_desc->SetType("scale");
      op_desc->SetInput("X", OutputGrad("Out"));
      op_desc->SetOutput("Out", x_g);
      op_desc->SetAttr("scale", 1.0f);
      retv.emplace_back(op_desc);
    }

    auto y_g = InputGrad("Y");
    if (!y_g.empty()) {
      auto *op_desc = new OpDescBind();
      op_desc->SetType("scale");
      op_desc->SetInput("X", OutputGrad("Out"));
      op_desc->SetOutput("Out", y_g);
      op_desc->SetAttr("scale", -1.0f);
      retv.emplace_back(op_desc);
    }
    return retv;
  }
};

class MinusOpMaker : public OpProtoAndCheckerMaker {
 public:
  MinusOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "");
    AddInput("Y", "");
    AddOutput("Out", "");
    AddComment("minus for unittest");
  }
};
Y
Yu Yang 已提交
228 229 230 231
}  // namespace framework
}  // namespace paddle

namespace f = paddle::framework;
D
dongzhihong 已提交
232
namespace ops = paddle::operators;
Y
Yu Yang 已提交
233
using EnforceNotMet = paddle::platform::EnforceNotMet;
Q
Qiao Longfei 已提交
234 235
// rowwise_add
REGISTER_OPERATOR(rowwise_add, f::NoneOp, f::RowWiseAddOpMaker,
236
                  f::RowWiseAddGradMaker);
Q
Qiao Longfei 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
REGISTER_OP_CPU_KERNEL(rowwise_add,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OPERATOR(rowwise_add_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(rowwise_add_grad,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
// mul
REGISTER_OP(mul, f::NoneOp, f::MulOpMaker, mul_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(mul, f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(mul_grad,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
// sigmoid
REGISTER_OP(sigmoid, f::NoneOp, f::SigmoidOpMaker, sigmoid_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(sigmoid,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NoneOp, f::NoGradOpMaker);
// fill_zeros_like
REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NoneOp, f::FillZeroOpMaker);
REGISTER_OP_CPU_KERNEL(fill_zeros_like,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
// sum
REGISTER_OP(sum, f::NoneOp, f::SumOpMaker, sum_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(sum, f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(sum_grad,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
// fc
F
fengjiayi 已提交
262
REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker);
Q
Qiao Longfei 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
// many_output_op
REGISTER_OP(many_output_op, f::NoneOp, f::ManyOutputOpMaker,
            many_output_op_grad, f::NoneOp);
// mult_in_out
REGISTER_OP(mult_in_out, f::NoneOp, f::MultInOutOpMaker, mult_in_out_grad,
            f::NoneOp);
REGISTER_OP_CPU_KERNEL(mult_in_out,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(mult_in_out_grad,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
// minus
REGISTER_OPERATOR(minus, f::NoneOp, f::MinusOpMaker, f::MinusGradOpDescMaker);
REGISTER_OP_CPU_KERNEL(minus, f::NoneKernel<paddle::platform::CPUPlace, float>);
// scale
REGISTER_OPERATOR(scale, f::NoneOp);
REGISTER_OP_CPU_KERNEL(scale, f::NoneKernel<paddle::platform::CPUPlace, float>);
Y
Yu Yang 已提交
279

280 281 282 283 284 285 286 287 288 289
TEST(Backward, simple_op_not_need_grad) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  ASSERT_NE(fwd, nullptr);
  auto gop = f::Backward(*fwd, {"x"});
  ASSERT_EQ(gop->Output(f::GradVarName("X")), f::kEmptyVarName);

  auto no_input_gop = f::Backward(*fwd, {"x", "b"});
  ASSERT_NE(no_input_gop, nullptr);
  ASSERT_TRUE(no_input_gop->IsNetOp());
Y
Yu Yang 已提交
290
  ASSERT_EQ(0UL, static_cast<ops::NetOp *>(no_input_gop.get())->ops_.size());
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
}

TEST(Backward, net_fc_backward_normal) {
  std::shared_ptr<f::OperatorBase> fwd =
      f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {"b"}}},
                              {{"mul_result", {"mul_res"}},
                               {"add_result", {"add_re"}},
                               {"Out", {"out"}}},
                              {});
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
  auto net = static_cast<ops::NetOp *>(gop.get());

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(3UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
Q
qiaolongfei 已提交
310
  ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
311 312

  f::OperatorBase &d_add = *net->ops_[1];
Q
qiaolongfei 已提交
313
  ASSERT_EQ("rowwise_add_grad", d_add.Type());
314 315

  f::OperatorBase &d_mul = *net->ops_[2];
Q
qiaolongfei 已提交
316
  ASSERT_EQ("mul_grad", d_mul.Type());
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
}

TEST(Backward, net_fc_backward_not_have_b) {
  std::shared_ptr<f::OperatorBase> fwd =
      f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {}}},
                              {{"mul_result", {"mul_res"}},
                               {"add_result", {"add_res"}},
                               {"Out", {"tmp"}}},
                              {});
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
  auto net = static_cast<ops::NetOp *>(gop.get());

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(2UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
Q
qiaolongfei 已提交
336
  ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
337 338

  f::OperatorBase &d_mul = *net->ops_[1];
Q
qiaolongfei 已提交
339
  ASSERT_EQ("mul_grad", d_mul.Type());
340 341 342 343
}

TEST(Backward, net_input_of_network_not_need_grad) {
  ops::NetOp net;
Y
Yu Yang 已提交
344
  net.AppendOp(f::OpRegistry::CreateOp(
345 346 347 348 349
      "fc", {{"X", {"x"}}, {"W", {"W1"}}, {"b", {"b1"}}},
      {{"mul_result", {"mul_tmp_0"}},
       {"add_result", {"add_tmp_0"}},
       {"Out", {"hidden0"}}},
      {}));
Y
Yu Yang 已提交
350
  net.AppendOp(f::OpRegistry::CreateOp(
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
      "fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}},
      {{"mul_result", {"mul_tmp_1"}},
       {"add_result", {"add_tmp_1"}},
       {"Out", {"hidden1"}}},
      {}));
  net.CompleteAddOp();
  auto bwd = Backward(net, {"x"});  // x@GRAD is not need.
  ASSERT_TRUE(bwd->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());

  auto output_vars = bwd_net->OutputVars(true);
  std::unordered_set<std::string> all_outputs =
      std::unordered_set<std::string>(output_vars.begin(), output_vars.end());
  all_outputs.erase(f::kEmptyVarName);

  for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
    ASSERT_NE(all_outputs.find(f::GradVarName(out)), all_outputs.end());
  }

  // Not Generated X
  ASSERT_EQ(all_outputs.find(f::GradVarName("X")), all_outputs.end());

  ASSERT_EQ(2UL, bwd_net->ops_.size());
  ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
  auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
  ASSERT_EQ(3UL, first_fc_grad->ops_.size());
  ASSERT_EQ(f::kEmptyVarName,
            first_fc_grad->ops_[2]->Output(f::GradVarName("X")));
}

TEST(Backward, net_shared_weight) {
  ops::NetOp net;
Y
Yu Yang 已提交
383 384 385 386
  net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}},
                                       {{"Out", {"out"}}}, {}));
  net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}},
                                       {{"Out", {"FinalOut"}}}, {}));
387 388 389 390 391 392
  net.CompleteAddOp();

  auto bwd = f::Backward(net, {});
  ASSERT_TRUE(bwd->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
  ASSERT_EQ(3UL, bwd_net->ops_.size());
D
dongzhihong 已提交
393
  ASSERT_EQ("sum", bwd_net->ops_[2]->Type());
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

TEST(Backward, op_all_input_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"x", "b"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_TRUE(net->ops_.empty());
}

TEST(Backward, op_all_output_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"out"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_TRUE(net->ops_.empty());
}

TEST(Backward, op_part_of_output_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}},
                                     {{"y", {"Y"}}, {"z", {"Z"}}}, {});
  auto backward = f::Backward(*fwd, {"Z"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_EQ(net->ops_.size(), 2UL);

  auto &fill_zero = *net->ops_[0];
Q
qiaolongfei 已提交
423
  ASSERT_EQ("fill_zeros_like", fill_zero.Type());
D
dangqingqing 已提交
424 425 426 427
  ASSERT_EQ(1UL, fill_zero.Inputs("X").size());
  ASSERT_EQ("Z", fill_zero.Input("X"));
  ASSERT_EQ(1UL, fill_zero.Outputs("Y").size());
  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Y"));
428 429

  auto &d_many_out = *net->ops_[1];
Q
qiaolongfei 已提交
430 431
  ASSERT_EQ("many_output_op_grad", d_many_out.Type());
  ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.Inputs().size());  // I/O/OG
432 433 434 435 436 437 438 439 440 441 442
  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix,
            d_many_out.Input(f::GradVarName("z")));
  ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y")));
  ASSERT_EQ(f::GradVarName("X"), d_many_out.Output(f::GradVarName("x")));
}

TEST(Backward, op_part_of_input_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp("mul", {{"X", {"a"}}, {"Y", {"b"}}},
                                     {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"a"});
  auto &grad_mul = *backward;
Q
qiaolongfei 已提交
443 444 445
  ASSERT_EQ(grad_mul.Type(), "mul_grad");
  ASSERT_EQ(grad_mul.Inputs().size(), 2UL + 1UL + 1UL);
  ASSERT_EQ(grad_mul.Outputs().size(), 2UL);
446 447 448 449 450 451 452 453 454 455
  ASSERT_EQ(grad_mul.Output(f::GradVarName("X")), f::kEmptyVarName);
  ASSERT_EQ(grad_mul.Output(f::GradVarName("Y")), f::GradVarName("b"));
  ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
  ASSERT_EQ(grad_mul.Input("X"), "a");
  ASSERT_EQ(grad_mul.Input("Y"), "b");
  ASSERT_EQ(grad_mul.Input("Out"), "out");
}

TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
  ops::NetOp net;
Y
Yu Yang 已提交
456
  net.AppendOp(f::OpRegistry::CreateOp(
457 458 459 460 461
      "fc", {{"X", {"x1"}}, {"W", {"w1"}}, {"b", {"b1"}}},
      {{"mul_result", {"mul_out1"}},
       {"add_result", {"add_out1"}},
       {"Out", {"out1"}}},
      {}));
Y
Yu Yang 已提交
462
  net.AppendOp(f::OpRegistry::CreateOp(
463 464 465 466 467
      "fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}},
      {{"mul_result", {"mul_out2"}},
       {"add_result", {"tmp_out2"}},
       {"Out", {"out2"}}},
      {}));
Y
Yu Yang 已提交
468
  net.AppendOp(f::OpRegistry::CreateOp(
469 470 471 472 473 474 475 476 477 478 479 480
      "fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}},
      {{"mul_result", {"mul_out3"}},
       {"add_result", {"tmp_out3"}},
       {"Out", {"out3"}}},
      {}));
  net.CompleteAddOp();

  auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
  ASSERT_TRUE(backward->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_EQ(bwd_net->ops_.size(), 3UL);
  auto &grad_fc = *bwd_net->ops_[0];
Y
Yu Yang 已提交
481 482

  const char *all = paddle::operators::NetOp::kAll;
Q
qiaolongfei 已提交
483
  EXPECT_EQ(grad_fc.Inputs(all).size(),
484 485 486
            2UL       /* external input number */
                + 1UL /* external output number*/
                + 1UL /* number of gradient of external output*/
487 488
                + 2UL /* internal variable number*/
            );
Q
qiaolongfei 已提交
489
  EXPECT_EQ(grad_fc.Outputs(all).size(),
490
            2UL       /* input number of mul*/
491 492 493
                + 2UL /* input number of rowwise_add*/
                + 1UL /* input number of sigmod */
                - 1UL /* out2 is not needed*/);
Q
qiaolongfei 已提交
494 495 496 497
  EXPECT_EQ(bwd_net->ops_[1]->Inputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[1]->Outputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->Inputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->Outputs(all).size(), 0UL);
498
}
499 500

TEST(Backward, simple_single_op) {
501
  f::ProgramDescBind program;
502
  f::BlockDescBind *block = program.MutableBlock(0);
Q
Qiao Longfei 已提交
503

504 505 506 507 508 509
  f::OpDescBind *op = block->AppendOp();
  op->SetType("rowwise_add");
  op->SetInput("X", {"x"});
  op->SetInput("b", {"b"});
  op->SetOutput("Out", {"out"});

510
  auto target = f::VarDescBind("out");
F
fengjiayi 已提交
511
  auto var_to_grad = AppendBackward(program, target, {});
512

513 514 515 516 517
  ASSERT_EQ(block->AllOps().size(), 3UL);
  f::OpDescBind *fill_op = block->AllOps()[1];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op = block->AllOps()[2];
518 519 520 521 522 523 524 525 526
  EXPECT_EQ(grad_op->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out")}));
  EXPECT_EQ(grad_op->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x")}));
  EXPECT_EQ(grad_op->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b")}));
F
fengjiayi 已提交
527

Q
Qiao Longfei 已提交
528
  EXPECT_EQ(var_to_grad.size(), 3UL);
F
fengjiayi 已提交
529 530 531 532 533
  EXPECT_EQ(var_to_grad.at("b"), f::GradVarInfo(f::GradVarName("b"), 0, 2));
  EXPECT_EQ(var_to_grad.at("x"), f::GradVarInfo(f::GradVarName("x"), 0, 2));

  EXPECT_TRUE(block->HasVar(f::GradVarName("b")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("x")));
534 535
}

F
fengjiayi 已提交
536
TEST(Backward, default_attribute) {
537
  f::ProgramDescBind program;
538
  f::BlockDescBind *block = program.MutableBlock(0);
F
fengjiayi 已提交
539 540 541 542 543
  f::OpDescBind *op = block->AppendOp();
  op->SetType("mul");
  op->SetInput("X", {"x"});
  op->SetInput("Y", {"y"});
  op->SetOutput("Out", {"out"});
544
  op->CheckAttrs();
F
fengjiayi 已提交
545

546 547
  auto target = f::VarDescBind("out");
  AppendBackward(program, target, {});
F
fengjiayi 已提交
548

549
  ASSERT_EQ(block->AllOps().size(), 3UL);
F
fengjiayi 已提交
550 551 552
  EXPECT_EQ(boost::get<int>(op->GetAttr("x_num_col_dims")), 1);
  EXPECT_EQ(boost::get<int>(op->GetAttr("y_num_col_dims")), 1);

553 554 555 556
  f::OpDescBind *fill_op = block->AllOps()[1];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op = block->AllOps()[2];
F
fengjiayi 已提交
557 558 559 560 561
  ASSERT_EQ(grad_op->Type(), "mul_grad");
  EXPECT_EQ(boost::get<int>(grad_op->GetAttr("x_num_col_dims")), 1);
  EXPECT_EQ(boost::get<int>(grad_op->GetAttr("y_num_col_dims")), 1);
}

562
TEST(Backward, simple_mult_op) {
563
  f::ProgramDescBind program;
564
  f::BlockDescBind *block = program.MutableBlock(0);
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"out1"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out2"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

583 584
  auto target = f::VarDescBind("out3");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
585
  auto var_to_grad = AppendBackward(program, target, {});
586

587 588 589 590 591
  ASSERT_EQ(block->AllOps().size(), 6UL + 1);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op1 = block->AllOps()[6];
592 593 594 595 596 597 598 599 600 601
  EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));

602
  f::OpDescBind *grad_op2 = block->AllOps()[5];
603 604 605 606 607 608 609 610 611 612 613 614 615
  EXPECT_EQ(grad_op2->Type(), "mul_grad");
  ASSERT_EQ(grad_op2->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op2->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op2->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op2->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op2->Input("Out"), std::vector<std::string>({"out2"}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));

616
  f::OpDescBind *grad_op3 = block->AllOps()[4];
617 618 619 620 621 622 623 624 625
  EXPECT_EQ(grad_op3->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op3->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op3->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out3")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b3")}));
F
fengjiayi 已提交
626

Q
Qiao Longfei 已提交
627
  EXPECT_EQ(var_to_grad.size(), 7UL);
F
fengjiayi 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("out1"),
            f::GradVarInfo(f::GradVarName("out1"), 0, 5));
  EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5));
  EXPECT_EQ(var_to_grad.at("out2"),
            f::GradVarInfo(f::GradVarName("out2"), 0, 4));
  EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4));

  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("y2")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out2")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b3")));
F
fengjiayi 已提交
643 644 645
}

TEST(Backward, intermedia_var_no_grad) {
646
  f::ProgramDescBind program;
647
  f::BlockDescBind *block = program.MutableBlock(0);
F
fengjiayi 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"x2"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out2"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

  f::OpDescBind *op4 = block->AppendOp();
  op4->SetType("mul");
  op4->SetInput("X", {"out1"});
  op4->SetInput("Y", {"out3"});
  op4->SetOutput("Out", {"out4"});

672 673
  auto target = f::VarDescBind("out4");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
674
  auto var_to_grad = AppendBackward(program, target, {"out3"});
F
fengjiayi 已提交
675

676 677 678 679 680
  ASSERT_EQ(block->AllOps().size(), 7UL);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op1 = block->AllOps()[6];
F
fengjiayi 已提交
681 682 683 684 685 686 687 688 689 690
  EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));

691
  f::OpDescBind *grad_op4 = block->AllOps()[5];
F
fengjiayi 已提交
692 693 694 695 696 697 698 699 700 701
  EXPECT_EQ(grad_op4->Type(), "mul_grad");
  ASSERT_EQ(grad_op4->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op4->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op4->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op4->Input("Y"), std::vector<std::string>({"out3"}));
  EXPECT_EQ(grad_op4->Input("Out"), std::vector<std::string>({"out4"}));
  EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out4")}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1")}));
702
  EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), std::vector<std::string>());
F
fengjiayi 已提交
703

Q
Qiao Longfei 已提交
704
  EXPECT_EQ(var_to_grad.size(), 4UL);
F
fengjiayi 已提交
705 706 707 708 709 710 711 712
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("out1"),
            f::GradVarInfo(f::GradVarName("out1"), 0, 5));

  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
F
fengjiayi 已提交
713 714 715
}

TEST(Backward, var_no_grad) {
716
  f::ProgramDescBind program;
717
  f::BlockDescBind *block = program.MutableBlock(0);
F
fengjiayi 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("mult_in_out");
  op1->SetInput("X", {"x1"});
  op1->SetInput("H", {"h1"});
  op1->SetOutput("Y", {"y1"});
  op1->SetOutput("Z", {"z1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mult_in_out");
  op2->SetInput("X", {"y1"});
  op2->SetInput("H", {"z1"});
  op2->SetOutput("Y", {"y2"});
  op2->SetOutput("Z", {"z2"});

732 733
  auto target = f::VarDescBind("z2");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
734
  auto var_to_grad = AppendBackward(program, target, {"z1"});
F
fengjiayi 已提交
735

736 737 738 739 740
  ASSERT_EQ(block->AllOps().size(), 6UL);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op2 = block->AllOps()[3];
F
fengjiayi 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753
  ASSERT_EQ(grad_op2->Type(), "mult_in_out_grad");
  ASSERT_EQ(grad_op2->InputNames().size(), 6UL);
  ASSERT_EQ(grad_op2->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op2->Input("X"), std::vector<std::string>({"y1"}));
  EXPECT_EQ(grad_op2->Input("H"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(grad_op2->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op2->Input("Z"), std::vector<std::string>({"z2"}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Z")),
            std::vector<std::string>({f::GradVarName("z2")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("y1")}));
754
  EXPECT_EQ(grad_op2->Output(f::GradVarName("H")), std::vector<std::string>());
F
fengjiayi 已提交
755

756
  f::OpDescBind *fill_zero_op = block->AllOps()[4];
F
fengjiayi 已提交
757 758 759 760 761 762 763
  ASSERT_EQ(fill_zero_op->Type(), "fill_zeros_like");
  ASSERT_EQ(fill_zero_op->InputNames().size(), 1UL);
  ASSERT_EQ(fill_zero_op->OutputNames().size(), 1UL);
  EXPECT_EQ(fill_zero_op->Input("X"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(fill_zero_op->Output("Y"),
            std::vector<std::string>({std::string("z1") + f::kZeroVarSuffix}));

764
  f::OpDescBind *grad_op1 = block->AllOps()[5];
F
fengjiayi 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
  ASSERT_EQ(grad_op1->Type(), "mult_in_out_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 6UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input("X"), std::vector<std::string>({"x1"}));
  EXPECT_EQ(grad_op1->Input("H"), std::vector<std::string>({"h1"}));
  EXPECT_EQ(grad_op1->Input("Y"), std::vector<std::string>({"y1"}));
  EXPECT_EQ(grad_op1->Input("Z"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y1")}));
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Z")),
            std::vector<std::string>({std::string("z1") + f::kZeroVarSuffix}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("H")),
            std::vector<std::string>({f::GradVarName("h1")}));
F
fengjiayi 已提交
780

Q
Qiao Longfei 已提交
781
  EXPECT_EQ(var_to_grad.size(), 4UL);
F
fengjiayi 已提交
782 783 784 785 786 787 788
  EXPECT_EQ(var_to_grad.at("y1"), f::GradVarInfo(f::GradVarName("y1"), 0, 3));
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 5));
  EXPECT_EQ(var_to_grad.at("h1"), f::GradVarInfo(f::GradVarName("h1"), 0, 5));

  EXPECT_TRUE(block->HasVar(f::GradVarName("y1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("h1")));
F
fengjiayi 已提交
789 790 791
}

TEST(Backward, shared_var) {
792
  f::ProgramDescBind program;
793
  f::BlockDescBind *block = program.MutableBlock(0);
F
fengjiayi 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"out1"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out1"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

812 813
  auto target = f::VarDescBind("out3");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
814
  auto var_to_grad = AppendBackward(program, target, {});
F
fengjiayi 已提交
815

816 817 818 819 820
  ASSERT_EQ(block->AllOps().size(), 8UL);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op3 = block->AllOps()[4];
F
fengjiayi 已提交
821 822 823 824 825 826 827 828 829 830
  ASSERT_EQ(grad_op3->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op3->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op3->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out3")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@0"}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b3")}));

831
  f::OpDescBind *grad_op4 = block->AllOps()[5];
F
fengjiayi 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844
  ASSERT_EQ(grad_op4->Type(), "mul_grad");
  ASSERT_EQ(grad_op4->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op4->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op4->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op4->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op4->Input("Out"), std::vector<std::string>({"out2"}));
  EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@1"}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));

845
  f::OpDescBind *sum_op = block->AllOps()[6];
F
fengjiayi 已提交
846 847 848 849 850 851 852 853 854
  ASSERT_EQ(sum_op->Type(), "sum");
  ASSERT_EQ(sum_op->InputNames().size(), 1UL);
  ASSERT_EQ(sum_op->OutputNames().size(), 1UL);
  EXPECT_EQ(sum_op->Input("X"),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@0",
                                      f::GradVarName("out1") + "@RENAME@1"}));
  EXPECT_EQ(sum_op->Output("Out"),
            std::vector<std::string>({f::GradVarName("out1")}));

855
  f::OpDescBind *grad_op1 = block->AllOps()[7];
F
fengjiayi 已提交
856 857 858 859 860 861 862 863 864
  ASSERT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));
F
fengjiayi 已提交
865

Q
Qiao Longfei 已提交
866
  EXPECT_EQ(var_to_grad.size(), 6UL);
F
fengjiayi 已提交
867 868 869 870 871 872 873 874 875 876 877 878
  EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4));
  EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5));
  EXPECT_EQ(var_to_grad.at("out1"),
            f::GradVarInfo(f::GradVarName("out1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 7));
  EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 7));

  EXPECT_TRUE(block->HasVar(f::GradVarName("b3")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("y2")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
879 880 881
}

TEST(Backward, half_backward) {
882
  f::ProgramDescBind program;
883
  f::BlockDescBind *block = program.MutableBlock(0);
884 885 886 887 888 889
  auto *op1 = block->AppendOp();
  op1->SetType("minus");
  op1->SetInput("X", {"a"});
  op1->SetInput("Y", {"b"});
  op1->SetOutput("Out", {"out"});

890 891
  auto target = f::VarDescBind("out");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
892
  auto var_to_grad = AppendBackward(program, target, {"b"});
893 894
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");
895
  auto ops = block->AllOps();
896
  ASSERT_EQ(3UL, ops.size());
F
fengjiayi 已提交
897

Q
Qiao Longfei 已提交
898
  EXPECT_EQ(var_to_grad.size(), 2UL);
F
fengjiayi 已提交
899 900
  EXPECT_EQ(var_to_grad.at("a"),
            f::GradVarInfo(f::GradVarName("a"), 0, forward_len + 1));
901
}