backward_test.cc 26.8 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

Y
Yu Yang 已提交
17
#include <gtest/gtest.h>
18 19
#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_desc.h"
Y
Yu Yang 已提交
20
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
21
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
22

Y
Yu Yang 已提交
23 24 25
namespace paddle {
namespace framework {

D
dongzhihong 已提交
26 27
using DeviceContext = platform::DeviceContext;

Y
Yu Yang 已提交
28
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
29
 public:
Y
Yu Yang 已提交
30
  RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
31
      : OpProtoAndCheckerMaker(proto, op_checker) {
32 33 34
    AddInput("X", "Input X of Add");
    AddInput("b", "Bias of Add");
    AddOutput("Out", "Out of Add");
Y
Yu Yang 已提交
35 36 37 38
    AddComment("Add Op");
  }
};

39 40 41 42 43
class RowWiseAddGradMaker : public SingleGradOpDescMaker {
 public:
  using SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
44 45 46 47 48 49 50
  std::unique_ptr<OpDescBind> Apply() const override {
    auto grad_op = new OpDescBind();
    grad_op->SetInput(GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(GradVarName("X"), InputGrad("X"));
    grad_op->SetOutput(GradVarName("b"), InputGrad("b"));
    grad_op->SetType("rowwise_add_grad");
    return std::unique_ptr<OpDescBind>(grad_op);
51 52 53
  }
};

Y
Yu Yang 已提交
54 55 56 57
class MulOpMaker : public OpProtoAndCheckerMaker {
 public:
  MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
58 59
    AddInput("X", "A");
    AddInput("Y", "B");
Y
Yu Yang 已提交
60 61 62 63 64 65 66 67 68 69
    AddOutput("Out", "Out");
    AddComment("Mul");
  }
};

class SigmoidOpMaker : public OpProtoAndCheckerMaker {
 public:
  SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X");
Y
Yu Yang 已提交
70
    AddOutput("Out", "Y");
Y
Yu Yang 已提交
71 72 73 74
    AddComment("Sigmoid");
  }
};

D
dongzhihong 已提交
75 76 77 78 79
class NoGradOpMaker : public OpProtoAndCheckerMaker {
 public:
  NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X input");
Y
Yu Yang 已提交
80
    AddOutput("Out", "Y output");
D
dongzhihong 已提交
81 82 83 84
    AddComment("NoGradOp, same input output. no Grad");
  }
};

D
dongzhihong 已提交
85
class FcOp : public operators::NetOp {
Y
Yu Yang 已提交
86
 public:
Y
Yu Yang 已提交
87 88
  FcOp(const std::string &type, const VariableNameMap &inputs,
       const VariableNameMap &outputs, const AttributeMap &attrs)
Y
Yu Yang 已提交
89
      : NetOp(type, inputs, outputs, attrs) {
Y
Yu Yang 已提交
90 91 92
    AppendOp(OpRegistry::CreateOp("mul",
                                  {{"X", {Input("X")}}, {"Y", {Input("W")}}},
                                  {{"Out", {Output("mul_result")}}}, {}));
93
    auto input_b = Inputs("b");
Y
Yu Yang 已提交
94
    std::string before_act = "mul_result";
95
    if (input_b.size() != 0) {
Y
Yu Yang 已提交
96
      AppendOp(OpRegistry::CreateOp(
97
          "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}},
Y
Yu Yang 已提交
98
          {{"Out", {Output("add_result")}}}, {}));
Y
Yu Yang 已提交
99 100 101
      before_act = "add_result";
    } else {
      auto out_varname = Output("add_result");
102 103
      if (out_varname != kEmptyVarName) {
        this->Rename(out_varname, kEmptyVarName);
Y
Yu Yang 已提交
104
      }
Y
Yu Yang 已提交
105
    }
Y
Yu Yang 已提交
106

Y
Yu Yang 已提交
107 108
    AppendOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
                                  {{"Out", {Output("Out")}}}, {}));
Y
Yu Yang 已提交
109 110 111 112 113 114 115 116 117 118 119
    CompleteAddOp(false);
  }
};

class FcOpMaker : public OpProtoAndCheckerMaker {
 public:
  FcOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("W", "w");
    AddInput("b", "b");
Y
Yu Yang 已提交
120 121
    AddOutput("mul_result", "").AsIntermediate();
    AddOutput("add_result", "").AsIntermediate();
Y
Yu Yang 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    AddOutput("Out", "");
    AddComment("");
  }
};

class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
 public:
  ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("y", "y");
    AddOutput("z", "z");
    AddComment("");
  }
};

class FillZeroOpMaker : public OpProtoAndCheckerMaker {
 public:
  FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
D
dangqingqing 已提交
142 143
    AddInput("X", "x");
    AddOutput("Y", "out");
Y
Yu Yang 已提交
144 145 146
    AddComment("");
  }
};
Y
Yu Yang 已提交
147

D
dongzhihong 已提交
148
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
149
 public:
D
dongzhihong 已提交
150
  SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
Y
Yu Yang 已提交
151
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
152 153
    AddInput("X", "the input tensors of sum operator.").AsDuplicable();
    AddOutput("Out", "the output tensor of sum operator.");
Y
Yu Yang 已提交
154 155 156
    AddComment("");
  }
};
D
dongzhihong 已提交
157

F
fengjiayi 已提交
158 159 160 161 162 163 164 165 166 167 168 169
class MultInOutOpMaker : public OpProtoAndCheckerMaker {
 public:
  MultInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("H", "h");
    AddOutput("Y", "y");
    AddOutput("Z", "z");
    AddComment("");
  }
};

Y
Yu Yang 已提交
170 171 172 173
}  // namespace framework
}  // namespace paddle

namespace f = paddle::framework;
D
dongzhihong 已提交
174
namespace ops = paddle::operators;
Y
Yu Yang 已提交
175
using EnforceNotMet = paddle::platform::EnforceNotMet;
176 177 178
REGISTER_OPERATOR(rowwise_add, f::NOP, f::RowWiseAddOpMaker,
                  f::RowWiseAddGradMaker);
REGISTER_OPERATOR(rowwise_add_grad, f::NOP);
179 180
REGISTER_OP(mul, f::NOP, f::MulOpMaker, mul_grad, f::NOP);
REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, sigmoid_grad, f::NOP);
F
fengjiayi 已提交
181 182
REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NOP, f::NoGradOpMaker);
REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NOP, f::FillZeroOpMaker);
D
dongzhihong 已提交
183
REGISTER_OP(sum, f::NOP, f::SumOpMaker, sum_grad, f::NOP);
F
fengjiayi 已提交
184
REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker);
185 186
REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, many_output_op_grad,
            f::NOP);
F
fengjiayi 已提交
187
REGISTER_OP(mult_in_out, f::NOP, f::MultInOutOpMaker, mult_in_out_grad, f::NOP);
Y
Yu Yang 已提交
188

189 190 191 192 193 194 195 196 197 198
TEST(Backward, simple_op_not_need_grad) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  ASSERT_NE(fwd, nullptr);
  auto gop = f::Backward(*fwd, {"x"});
  ASSERT_EQ(gop->Output(f::GradVarName("X")), f::kEmptyVarName);

  auto no_input_gop = f::Backward(*fwd, {"x", "b"});
  ASSERT_NE(no_input_gop, nullptr);
  ASSERT_TRUE(no_input_gop->IsNetOp());
Y
Yu Yang 已提交
199
  ASSERT_EQ(0UL, static_cast<ops::NetOp *>(no_input_gop.get())->ops_.size());
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
}

TEST(Backward, net_fc_backward_normal) {
  std::shared_ptr<f::OperatorBase> fwd =
      f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {"b"}}},
                              {{"mul_result", {"mul_res"}},
                               {"add_result", {"add_re"}},
                               {"Out", {"out"}}},
                              {});
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
  auto net = static_cast<ops::NetOp *>(gop.get());

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(3UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
Q
qiaolongfei 已提交
219
  ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
220 221

  f::OperatorBase &d_add = *net->ops_[1];
Q
qiaolongfei 已提交
222
  ASSERT_EQ("rowwise_add_grad", d_add.Type());
223 224

  f::OperatorBase &d_mul = *net->ops_[2];
Q
qiaolongfei 已提交
225
  ASSERT_EQ("mul_grad", d_mul.Type());
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
}

TEST(Backward, net_fc_backward_not_have_b) {
  std::shared_ptr<f::OperatorBase> fwd =
      f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {}}},
                              {{"mul_result", {"mul_res"}},
                               {"add_result", {"add_res"}},
                               {"Out", {"tmp"}}},
                              {});
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
  auto net = static_cast<ops::NetOp *>(gop.get());

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(2UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
Q
qiaolongfei 已提交
245
  ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
246 247

  f::OperatorBase &d_mul = *net->ops_[1];
Q
qiaolongfei 已提交
248
  ASSERT_EQ("mul_grad", d_mul.Type());
249 250 251 252
}

TEST(Backward, net_input_of_network_not_need_grad) {
  ops::NetOp net;
Y
Yu Yang 已提交
253
  net.AppendOp(f::OpRegistry::CreateOp(
254 255 256 257 258
      "fc", {{"X", {"x"}}, {"W", {"W1"}}, {"b", {"b1"}}},
      {{"mul_result", {"mul_tmp_0"}},
       {"add_result", {"add_tmp_0"}},
       {"Out", {"hidden0"}}},
      {}));
Y
Yu Yang 已提交
259
  net.AppendOp(f::OpRegistry::CreateOp(
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
      "fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}},
      {{"mul_result", {"mul_tmp_1"}},
       {"add_result", {"add_tmp_1"}},
       {"Out", {"hidden1"}}},
      {}));
  net.CompleteAddOp();
  auto bwd = Backward(net, {"x"});  // x@GRAD is not need.
  ASSERT_TRUE(bwd->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());

  auto output_vars = bwd_net->OutputVars(true);
  std::unordered_set<std::string> all_outputs =
      std::unordered_set<std::string>(output_vars.begin(), output_vars.end());
  all_outputs.erase(f::kEmptyVarName);

  for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
    ASSERT_NE(all_outputs.find(f::GradVarName(out)), all_outputs.end());
  }

  // Not Generated X
  ASSERT_EQ(all_outputs.find(f::GradVarName("X")), all_outputs.end());

  ASSERT_EQ(2UL, bwd_net->ops_.size());
  ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
  auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
  ASSERT_EQ(3UL, first_fc_grad->ops_.size());
  ASSERT_EQ(f::kEmptyVarName,
            first_fc_grad->ops_[2]->Output(f::GradVarName("X")));
}

TEST(Backward, net_shared_weight) {
  ops::NetOp net;
Y
Yu Yang 已提交
292 293 294 295
  net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}},
                                       {{"Out", {"out"}}}, {}));
  net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}},
                                       {{"Out", {"FinalOut"}}}, {}));
296 297 298 299 300 301
  net.CompleteAddOp();

  auto bwd = f::Backward(net, {});
  ASSERT_TRUE(bwd->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
  ASSERT_EQ(3UL, bwd_net->ops_.size());
D
dongzhihong 已提交
302
  ASSERT_EQ("sum", bwd_net->ops_[2]->Type());
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
}

TEST(Backward, op_all_input_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"x", "b"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_TRUE(net->ops_.empty());
}

TEST(Backward, op_all_output_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"out"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_TRUE(net->ops_.empty());
}

TEST(Backward, op_part_of_output_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}},
                                     {{"y", {"Y"}}, {"z", {"Z"}}}, {});
  auto backward = f::Backward(*fwd, {"Z"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_EQ(net->ops_.size(), 2UL);

  auto &fill_zero = *net->ops_[0];
Q
qiaolongfei 已提交
332
  ASSERT_EQ("fill_zeros_like", fill_zero.Type());
D
dangqingqing 已提交
333 334 335 336
  ASSERT_EQ(1UL, fill_zero.Inputs("X").size());
  ASSERT_EQ("Z", fill_zero.Input("X"));
  ASSERT_EQ(1UL, fill_zero.Outputs("Y").size());
  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Y"));
337 338

  auto &d_many_out = *net->ops_[1];
Q
qiaolongfei 已提交
339 340
  ASSERT_EQ("many_output_op_grad", d_many_out.Type());
  ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.Inputs().size());  // I/O/OG
341 342 343 344 345 346 347 348 349 350 351
  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix,
            d_many_out.Input(f::GradVarName("z")));
  ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y")));
  ASSERT_EQ(f::GradVarName("X"), d_many_out.Output(f::GradVarName("x")));
}

TEST(Backward, op_part_of_input_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp("mul", {{"X", {"a"}}, {"Y", {"b"}}},
                                     {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"a"});
  auto &grad_mul = *backward;
Q
qiaolongfei 已提交
352 353 354
  ASSERT_EQ(grad_mul.Type(), "mul_grad");
  ASSERT_EQ(grad_mul.Inputs().size(), 2UL + 1UL + 1UL);
  ASSERT_EQ(grad_mul.Outputs().size(), 2UL);
355 356 357 358 359 360 361 362 363 364
  ASSERT_EQ(grad_mul.Output(f::GradVarName("X")), f::kEmptyVarName);
  ASSERT_EQ(grad_mul.Output(f::GradVarName("Y")), f::GradVarName("b"));
  ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
  ASSERT_EQ(grad_mul.Input("X"), "a");
  ASSERT_EQ(grad_mul.Input("Y"), "b");
  ASSERT_EQ(grad_mul.Input("Out"), "out");
}

TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
  ops::NetOp net;
Y
Yu Yang 已提交
365
  net.AppendOp(f::OpRegistry::CreateOp(
366 367 368 369 370
      "fc", {{"X", {"x1"}}, {"W", {"w1"}}, {"b", {"b1"}}},
      {{"mul_result", {"mul_out1"}},
       {"add_result", {"add_out1"}},
       {"Out", {"out1"}}},
      {}));
Y
Yu Yang 已提交
371
  net.AppendOp(f::OpRegistry::CreateOp(
372 373 374 375 376
      "fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}},
      {{"mul_result", {"mul_out2"}},
       {"add_result", {"tmp_out2"}},
       {"Out", {"out2"}}},
      {}));
Y
Yu Yang 已提交
377
  net.AppendOp(f::OpRegistry::CreateOp(
378 379 380 381 382 383 384 385 386 387 388 389
      "fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}},
      {{"mul_result", {"mul_out3"}},
       {"add_result", {"tmp_out3"}},
       {"Out", {"out3"}}},
      {}));
  net.CompleteAddOp();

  auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
  ASSERT_TRUE(backward->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_EQ(bwd_net->ops_.size(), 3UL);
  auto &grad_fc = *bwd_net->ops_[0];
Y
Yu Yang 已提交
390 391

  const char *all = paddle::operators::NetOp::kAll;
Q
qiaolongfei 已提交
392
  EXPECT_EQ(grad_fc.Inputs(all).size(),
393 394 395 396
            2UL       /* external input number */
                + 1UL /* external output number*/
                + 1UL /* number of gradient of external output*/
                + 2U /* internal variable number*/);
Q
qiaolongfei 已提交
397
  EXPECT_EQ(grad_fc.Outputs(all).size(),
398 399 400 401
            2UL       /* input number of mul*/
                + 2UL /* input number of rowwise_add
                       */
                + 1UL /* input number of sigmod */);
Q
qiaolongfei 已提交
402 403 404 405
  EXPECT_EQ(bwd_net->ops_[1]->Inputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[1]->Outputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->Inputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->Outputs(all).size(), 0UL);
406
}
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

// =================================== //

f::ProgramDesc *GetNewProgramDesc() {
  auto *program_desc = new f::ProgramDesc();
  auto *root_block = program_desc->add_blocks();
  root_block->set_idx(0);
  root_block->set_parent_idx(-1);
  return program_desc;
}

TEST(Backward, simple_single_op) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op = block->AppendOp();
  op->SetType("rowwise_add");
  op->SetInput("X", {"x"});
  op->SetInput("b", {"b"});
  op->SetOutput("Out", {"out"});

  AppendBackward(program, {});

  ASSERT_EQ(block->AllOps().size(), 2UL);
  f::OpDescBind *grad_op = block->AllOps()[1];
  EXPECT_EQ(grad_op->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out")}));
  EXPECT_EQ(grad_op->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x")}));
  EXPECT_EQ(grad_op->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b")}));
}

F
fengjiayi 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
TEST(Backward, default_attribute) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op = block->AppendOp();
  op->SetType("mul");
  op->SetInput("X", {"x"});
  op->SetInput("Y", {"y"});
  op->SetOutput("Out", {"out"});

  AppendBackward(program, {});

  ASSERT_EQ(block->AllOps().size(), 2UL);
  f::OpDescBind *grad_op = block->AllOps()[1];
  ASSERT_EQ(grad_op->Type(), "mul_grad");
  EXPECT_EQ(boost::get<int>(grad_op->GetAttr("x_num_col_dims")), 1);
  EXPECT_EQ(boost::get<int>(grad_op->GetAttr("y_num_col_dims")), 1);
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
TEST(Backward, simple_mult_op) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"out1"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out2"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

  AppendBackward(program, {});

  ASSERT_EQ(block->AllOps().size(), 6UL);
  f::OpDescBind *grad_op1 = block->AllOps()[5];
  EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));

  f::OpDescBind *grad_op2 = block->AllOps()[4];
  EXPECT_EQ(grad_op2->Type(), "mul_grad");
  ASSERT_EQ(grad_op2->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op2->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op2->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op2->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op2->Input("Out"), std::vector<std::string>({"out2"}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));

  f::OpDescBind *grad_op3 = block->AllOps()[3];
  EXPECT_EQ(grad_op3->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op3->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op3->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out3")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b3")}));
F
fengjiayi 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
}

TEST(Backward, intermedia_var_no_grad) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"x2"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out2"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

  f::OpDescBind *op4 = block->AppendOp();
  op4->SetType("mul");
  op4->SetInput("X", {"out1"});
  op4->SetInput("Y", {"out3"});
  op4->SetOutput("Out", {"out4"});

  AppendBackward(program, {"out3"});

  ASSERT_EQ(block->AllOps().size(), 6UL);
  f::OpDescBind *grad_op1 = block->AllOps()[5];
  EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));

  f::OpDescBind *grad_op4 = block->AllOps()[4];
  EXPECT_EQ(grad_op4->Type(), "mul_grad");
  ASSERT_EQ(grad_op4->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op4->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op4->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op4->Input("Y"), std::vector<std::string>({"out3"}));
  EXPECT_EQ(grad_op4->Input("Out"), std::vector<std::string>({"out4"}));
  EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out4")}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")),
            std::vector<std::string>({f::kEmptyVarName}));
}

TEST(Backward, var_no_grad) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("mult_in_out");
  op1->SetInput("X", {"x1"});
  op1->SetInput("H", {"h1"});
  op1->SetOutput("Y", {"y1"});
  op1->SetOutput("Z", {"z1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mult_in_out");
  op2->SetInput("X", {"y1"});
  op2->SetInput("H", {"z1"});
  op2->SetOutput("Y", {"y2"});
  op2->SetOutput("Z", {"z2"});

  AppendBackward(program, {"z1"});

  ASSERT_EQ(block->AllOps().size(), 5UL);
  f::OpDescBind *grad_op2 = block->AllOps()[2];
  ASSERT_EQ(grad_op2->Type(), "mult_in_out_grad");
  ASSERT_EQ(grad_op2->InputNames().size(), 6UL);
  ASSERT_EQ(grad_op2->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op2->Input("X"), std::vector<std::string>({"y1"}));
  EXPECT_EQ(grad_op2->Input("H"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(grad_op2->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op2->Input("Z"), std::vector<std::string>({"z2"}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Z")),
            std::vector<std::string>({f::GradVarName("z2")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("y1")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("H")),
            std::vector<std::string>({f::kEmptyVarName}));

  f::OpDescBind *fill_zero_op = block->AllOps()[3];
  ASSERT_EQ(fill_zero_op->Type(), "fill_zeros_like");
  ASSERT_EQ(fill_zero_op->InputNames().size(), 1UL);
  ASSERT_EQ(fill_zero_op->OutputNames().size(), 1UL);
  EXPECT_EQ(fill_zero_op->Input("X"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(fill_zero_op->Output("Y"),
            std::vector<std::string>({std::string("z1") + f::kZeroVarSuffix}));

  f::OpDescBind *grad_op1 = block->AllOps()[4];
  ASSERT_EQ(grad_op1->Type(), "mult_in_out_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 6UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input("X"), std::vector<std::string>({"x1"}));
  EXPECT_EQ(grad_op1->Input("H"), std::vector<std::string>({"h1"}));
  EXPECT_EQ(grad_op1->Input("Y"), std::vector<std::string>({"y1"}));
  EXPECT_EQ(grad_op1->Input("Z"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y1")}));
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Z")),
            std::vector<std::string>({std::string("z1") + f::kZeroVarSuffix}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("H")),
            std::vector<std::string>({f::GradVarName("h1")}));
}

TEST(Backward, shared_var) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"out1"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out1"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

  AppendBackward(program, {});

  ASSERT_EQ(block->AllOps().size(), 7UL);
  f::OpDescBind *grad_op3 = block->AllOps()[3];
  ASSERT_EQ(grad_op3->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op3->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op3->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out3")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@0"}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b3")}));

  f::OpDescBind *grad_op4 = block->AllOps()[4];
  ASSERT_EQ(grad_op4->Type(), "mul_grad");
  ASSERT_EQ(grad_op4->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op4->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op4->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op4->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op4->Input("Out"), std::vector<std::string>({"out2"}));
  EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@1"}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));

  f::OpDescBind *sum_op = block->AllOps()[5];
  ASSERT_EQ(sum_op->Type(), "sum");
  ASSERT_EQ(sum_op->InputNames().size(), 1UL);
  ASSERT_EQ(sum_op->OutputNames().size(), 1UL);
  EXPECT_EQ(sum_op->Input("X"),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@0",
                                      f::GradVarName("out1") + "@RENAME@1"}));
  EXPECT_EQ(sum_op->Output("Out"),
            std::vector<std::string>({f::GradVarName("out1")}));

  f::OpDescBind *grad_op1 = block->AllOps()[6];
  ASSERT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));
715
}