backward_test.cc 13.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

Y
Yu Yang 已提交
17 18
#include <gtest/gtest.h>
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
19
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21 22 23
namespace paddle {
namespace framework {

D
dongzhihong 已提交
24 25 26 27 28 29 30
using OperatorBase = framework::OperatorBase;
using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker;
using OpProto = framework::OpProto;
using OpAttrChecker = framework::OpAttrChecker;
using Scope = framework::Scope;
using DeviceContext = platform::DeviceContext;

Y
Yu Yang 已提交
31 32
class EmptyOp : public OperatorBase {
 public:
Y
Yu Yang 已提交
33
  void InferShape(const Scope &scope) const override {}
D
dongzhihong 已提交
34
  void Run(const Scope &scope, const DeviceContext &dev_ctx) const override {}
Y
Yu Yang 已提交
35 36
};

Y
Yu Yang 已提交
37
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
38
 public:
Y
Yu Yang 已提交
39
  RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
40 41 42 43 44 45 46 47
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input X of Add").IgnoreGradient();
    AddInput("b", "Bias of Add").IgnoreGradient();
    AddOutput("Out", "Out of Add").IgnoreGradient();
    AddComment("Add Op");
  }
};

Y
Yu Yang 已提交
48 49 50 51
class MulOpMaker : public OpProtoAndCheckerMaker {
 public:
  MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
52 53
    AddInput("X", "A");
    AddInput("Y", "B");
Y
Yu Yang 已提交
54 55 56 57 58 59 60 61 62 63
    AddOutput("Out", "Out");
    AddComment("Mul");
  }
};

class SigmoidOpMaker : public OpProtoAndCheckerMaker {
 public:
  SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X");
Y
Yu Yang 已提交
64
    AddOutput("Out", "Y");
Y
Yu Yang 已提交
65 66 67 68
    AddComment("Sigmoid");
  }
};

D
dongzhihong 已提交
69 70 71 72 73
class NoGradOpMaker : public OpProtoAndCheckerMaker {
 public:
  NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X input");
Y
Yu Yang 已提交
74
    AddOutput("Out", "Y output");
D
dongzhihong 已提交
75 76 77 78
    AddComment("NoGradOp, same input output. no Grad");
  }
};

D
dongzhihong 已提交
79
class FcOp : public operators::NetOp {
Y
Yu Yang 已提交
80 81
 public:
  void Init() override {
Y
Yu Yang 已提交
82 83 84
    AddOp(OpRegistry::CreateOp("mul",
                               {{"X", {Input("X")}}, {"Y", {Input("W")}}},
                               {{"Out", {Output("mul_result")}}}, {}));
Y
Yu Yang 已提交
85
    auto b_name = Input("b");
Y
Yu Yang 已提交
86
    std::string before_act = "mul_result";
87
    if (b_name != kEmptyVarName) {
Y
Yu Yang 已提交
88 89 90
      AddOp(OpRegistry::CreateOp(
          "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {b_name}}},
          {{"Out", {Output("add_result")}}}, {}));
Y
Yu Yang 已提交
91 92 93
      before_act = "add_result";
    } else {
      auto out_varname = Output("add_result");
94 95
      if (out_varname != kEmptyVarName) {
        this->Rename(out_varname, kEmptyVarName);
Y
Yu Yang 已提交
96
      }
Y
Yu Yang 已提交
97
    }
Y
Yu Yang 已提交
98

Y
Yu Yang 已提交
99 100
    AddOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
                               {{"Out", {Output("Out")}}}, {}));
Y
Yu Yang 已提交
101 102 103 104 105 106 107 108 109 110 111
    CompleteAddOp(false);
  }
};

class FcOpMaker : public OpProtoAndCheckerMaker {
 public:
  FcOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("W", "w");
    AddInput("b", "b");
Y
Yu Yang 已提交
112 113
    AddOutput("mul_result", "").SetTemporary();
    AddOutput("add_result", "").SetTemporary();
Y
Yu Yang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    AddOutput("Out", "");
    AddComment("");
  }
};

class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
 public:
  ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("y", "y");
    AddOutput("z", "z");
    AddComment("");
  }
};

class FillZeroOpMaker : public OpProtoAndCheckerMaker {
 public:
  FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("out", "out");
    AddComment("");
  }
};
Y
Yu Yang 已提交
139 140 141 142 143 144 145 146 147 148

class AddOpMaker : public OpProtoAndCheckerMaker {
 public:
  AddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x").SetMultiple();
    AddOutput("Y", "y");
    AddComment("");
  }
};
Y
Yu Yang 已提交
149 150 151 152
}  // namespace framework
}  // namespace paddle

namespace f = paddle::framework;
D
dongzhihong 已提交
153
namespace ops = paddle::operators;
Y
Yu Yang 已提交
154 155 156 157 158 159 160
using EnforceNotMet = paddle::platform::EnforceNotMet;
REGISTER_OP(rowwise_add, f::EmptyOp, f::RowWiseAddOpMaker);
REGISTER_GRADIENT_OP(rowwise_add, rowwise_add_grad, f::EmptyOp);
REGISTER_OP(mul, f::EmptyOp, f::MulOpMaker);
REGISTER_GRADIENT_OP(mul, mul_grad, f::EmptyOp);
REGISTER_OP(sigmoid, f::EmptyOp, f::SigmoidOpMaker);
REGISTER_GRADIENT_OP(sigmoid, sigmoid_grad, f::EmptyOp);
D
dongzhihong 已提交
161
REGISTER_OP(nograd, f::EmptyOp, f::NoGradOpMaker);
Y
Yu Yang 已提交
162
REGISTER_OP(fill_zeros_like, f::EmptyOp, f::FillZeroOpMaker);
Y
Yu Yang 已提交
163 164
REGISTER_OP(add, f::EmptyOp, f::AddOpMaker);
REGISTER_GRADIENT_OP(add, add_grad, f::EmptyOp);
D
dongzhihong 已提交
165 166 167
REGISTER_OP(fc, f::FcOp, f::FcOpMaker);
REGISTER_OP(many_output_op, f::EmptyOp, f::ManyOutputOpMaker);
REGISTER_GRADIENT_OP(many_output_op, many_output_op_grad, f::EmptyOp);
Y
Yu Yang 已提交
168

Y
Yu Yang 已提交
169
// TEST(Backward, simple_op_grad) {
170
//  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
Y
Yu Yang 已提交
171 172 173 174 175
//  ASSERT_NE(fwd, nullptr);
//  auto gop = f::OpRegistry::CreateGradOp(*fwd);
//  ASSERT_EQ(4UL, gop->inputs_.size());
//  ASSERT_EQ(f::kEmptyVarName, gop->inputs_[0]);
//  ASSERT_EQ("rowwise_add_grad", gop->type_);
176 177
//  ASSERT_EQ(f::GradVarName("X"), gop->outputs_[0]);
//  ASSERT_EQ(f::GradVarName("b"), gop->outputs_[1]);
Y
Yu Yang 已提交
178
//
179
//  ASSERT_EQ(f::GradVarName("X"), gop->Output(f::GradVarName("X")));
Y
Yu Yang 已提交
180 181 182 183 184 185 186
//}
//
// TEST(Backward, simple_op_not_need_grad) {
//  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
//  ASSERT_NE(fwd, nullptr);
//  auto gop = f::Backward(*fwd, {"X"});
//  ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(),
187
//                      f::GradVarName("X")),
Y
Yu Yang 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
//            gop->outputs_.end());
//
//  auto no_input_gop = f::Backward(*fwd, {"X", "b"});
//  ASSERT_NE(no_input_gop, nullptr);
//  ASSERT_TRUE(no_input_gop->IsNetOp());
//  ASSERT_EQ(0UL,
//            std::static_pointer_cast<ops::NetOp>(no_input_gop)->ops_.size());
//}
//
// TEST(Backward, net_fc_backward_normal) {
//  std::shared_ptr<f::OperatorBase> fwd = f::OpRegistry::CreateOp(
//      "fc", {"X", "w", "b"}, {"mul_result", "add_result", "out"}, {});
//  ASSERT_NE(fwd, nullptr);
//  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
//  ASSERT_TRUE(gop->IsNetOp());
//  auto net = static_cast<ops::NetOp *>(gop.get());
//
//  ASSERT_NO_THROW(net->DebugString());
//
//  ASSERT_EQ(3UL, net->ops_.size());
//
//  f::OperatorBase &d_sigmoid = *net->ops_[0];
//  ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);
//
//  f::OperatorBase &d_add = *net->ops_[1];
//  ASSERT_EQ("rowwise_add_grad", d_add.type_);
//
//  f::OperatorBase &d_mul = *net->ops_[2];
//  ASSERT_EQ("mul_grad", d_mul.type_);
//}
//
// TEST(Backward, net_fc_backward_not_have_b) {
//  std::shared_ptr<f::OperatorBase> fwd =
//      f::OpRegistry::CreateOp("fc", {"X", "w", f::kEmptyVarName},
//                              {"mul_result", "add_result", "tmp"}, {});
//  ASSERT_NE(fwd, nullptr);
//  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
//  ASSERT_TRUE(gop->IsNetOp());
//  auto net = static_cast<ops::NetOp *>(gop.get());
//
//  ASSERT_NO_THROW(net->DebugString());
//
//  ASSERT_EQ(2UL, net->ops_.size());
//
//  f::OperatorBase &d_sigmoid = *net->ops_[0];
//  ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);
//
//  f::OperatorBase &d_mul = *net->ops_[1];
//  ASSERT_EQ("mul_grad", d_mul.type_);
//}
//
// TEST(Backward, net_input_of_network_not_need_grad) {
//  ops::NetOp net;
//  net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"},
//                                    {"mul_tmp_0", "add_tmp_0", "hidden0"},
//                                    {}));
//  net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"},
//                                    {"mul_tmp_1", "add_tmp_1", "hidden1"},
//                                    {}));
//  net.CompleteAddOp();
//  auto bwd = Backward(net, {"X"});  // X@GRAD is not need.
//  ASSERT_TRUE(bwd->IsNetOp());
//  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
//
//  std::unordered_set<std::string> all_output =
//  std::unordered_set<std::string>(
//      bwd_net->outputs_.begin(), bwd_net->outputs_.end());
//  all_output.erase(f::kEmptyVarName);
//
//  for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
258
//    ASSERT_NE(all_output.find(f::GradVarName(out)), all_output.end());
Y
Yu Yang 已提交
259 260 261
//  }
//
//  // Not Generated X
262
//  ASSERT_EQ(all_output.find(f::GradVarName("X")), all_output.end());
Y
Yu Yang 已提交
263 264 265 266 267 268
//
//  ASSERT_EQ(2UL, bwd_net->ops_.size());
//  ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
//  auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
//  ASSERT_EQ(3UL, first_fc_grad->ops_.size());
//  ASSERT_EQ(f::kEmptyVarName,
269
//            first_fc_grad->ops_[2]->Output(f::GradVarName("A")));
Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
//}
//
// TEST(Backward, net_shared_weight) {
//  ops::NetOp net;
//  net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {}));
//  net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {}));
//  net.CompleteAddOp();
//
//  auto bwd = f::Backward(net, {});
//  ASSERT_TRUE(bwd->IsNetOp());
//  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
//  ASSERT_EQ(3UL, bwd_net->ops_.size());
//  ASSERT_EQ("add", bwd_net->ops_[2]->type_);
//}
//
// TEST(Backward, op_register_grad_not_for_network) {
//  auto fwd = f::OpRegistry::CreateOp(
//      "fc", {"X", "W", "b"}, {"mul_out", "add_out", "out1"},
//      {{"temporary_index", std::vector<int>{0, 1}}});
//
//  ASSERT_THROW(f::OpRegistry::CreateGradOp(*fwd), EnforceNotMet);
//}
//
// TEST(Backward, op_all_input_are_not_need) {
//  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
//  auto backward = f::Backward(*fwd, {"X", "b"});
//  ASSERT_TRUE(backward->IsNetOp());
//  auto net = static_cast<ops::NetOp *>(backward.get());
//  ASSERT_TRUE(net->ops_.empty());
//}
//
// TEST(Backward, op_all_output_are_not_need) {
//  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
//  auto backward = f::Backward(*fwd, {"Out"});
//  ASSERT_TRUE(backward->IsNetOp());
//  auto net = static_cast<ops::NetOp *>(backward.get());
//  ASSERT_TRUE(net->ops_.empty());
//}
//
// TEST(Backward, op_part_of_output_are_not_need) {
//  auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {});
//  auto backward = f::Backward(*fwd, {"Z"});
//  ASSERT_TRUE(backward->IsNetOp());
//  auto net = static_cast<ops::NetOp *>(backward.get());
//  ASSERT_EQ(net->ops_.size(), 2UL);
//
//  auto &fill_zero = *net->ops_[0];
//  ASSERT_EQ("fill_zeros_like", fill_zero.type_);
//  ASSERT_EQ(1UL, fill_zero.inputs_.size());
//  ASSERT_EQ("Z", fill_zero.inputs_[0]);
//  ASSERT_EQ(1UL, fill_zero.outputs_.size());
321
//  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.outputs_[0]);
Y
Yu Yang 已提交
322 323 324 325
//
//  auto &d_many_out = *net->ops_[1];
//  ASSERT_EQ("many_output_op_grad", d_many_out.type_);
//  ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size());  // I/O/OG
326 327 328 329
//  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix,
//            d_many_out.Input(f::GradVarName("z")));
//  ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y")));
//  ASSERT_EQ(f::GradVarName("X"), d_many_out.Output(f::GradVarName("x")));
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337 338
//}
//
// TEST(Backward, op_part_of_input_are_not_need) {
//  auto fwd = f::OpRegistry::CreateOp("mul", {"a", "b"}, {"out"}, {});
//  auto backward = f::Backward(*fwd, {"a"});
//  auto &grad_mul = *backward;
//  ASSERT_EQ(grad_mul.type_, "mul_grad");
//  ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL);
//  ASSERT_EQ(grad_mul.outputs_.size(), 2UL);
339 340 341
//  ASSERT_EQ(grad_mul.Output(f::GradVarName("A")), f::kEmptyVarName);
//  ASSERT_EQ(grad_mul.Output(f::GradVarName("B")), f::GradVarName("b"));
//  ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
Y
Yu Yang 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
//  ASSERT_EQ(grad_mul.Input("A"), "a");
//  ASSERT_EQ(grad_mul.Input("B"), "b");
//  ASSERT_EQ(grad_mul.Input("Out"), "out");
//}
//
// TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
//  ops::NetOp net;
//  net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"},
//                                    {"mul_out1", "add_out1", "out1"}, {}));
//  net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"},
//                                    {"mul_out2", "tmp_out2", "out2"}, {}));
//  net.AddOp(f::OpRegistry::CreateOp("fc", {"out2", "w3", "b3"},
//                                    {"mul_out3", "tmp_out3", "out3"}, {}));
//  net.CompleteAddOp();
//  auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
//  ASSERT_TRUE(backward->IsNetOp());
//  auto bwd_net = static_cast<ops::NetOp *>(backward.get());
//  ASSERT_EQ(bwd_net->ops_.size(), 3UL);
//  auto &grad_fc = *bwd_net->ops_[0];
//  EXPECT_EQ(grad_fc.inputs_.size(),
//            3UL       /* external input number */
//                + 1UL /* external output number*/
//                + 1UL /* number of gradient of external output*/
//                + 2U /* internal variable number*/);
//  EXPECT_EQ(grad_fc.outputs_.size(), 2UL       /* input number of mul*/
//                                         + 2UL /* input number of rowwise_add
//                                         */
//                                         + 1UL /* input number of sigmod */);
//  EXPECT_EQ(bwd_net->ops_[1]->inputs_.size(), 0UL);
//  EXPECT_EQ(bwd_net->ops_[1]->outputs_.size(), 0UL);
//  EXPECT_EQ(bwd_net->ops_[2]->inputs_.size(), 0UL);
//  EXPECT_EQ(bwd_net->ops_[2]->outputs_.size(), 0UL);
//}