device_context.h 18.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
25
#include "paddle/fluid/platform/dynload/cusolver.h"
26
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
27
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
28
#endif
Y
Yi Wang 已提交
29
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
30
#endif
D
dzhwinter 已提交
31

T
tensor-tang 已提交
32
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
33
#include "mkldnn.hpp"
34
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
35 36
#endif

37 38
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
41
#ifdef PADDLE_WITH_CUDA
42
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
43
#endif
44
#define EIGEN_USE_THREADS
Q
qijun 已提交
45
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
46

47 48 49 50
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
#endif

Q
QI JUN 已提交
51 52 53 54 55
namespace paddle {
namespace platform {

class DeviceContext {
 public:
Z
Zeng Jinle 已提交
56
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
57
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
58

59
  virtual void Wait() const {}
Q
QI JUN 已提交
60 61
};

Q
qijun 已提交
62 63
class CPUDeviceContext : public DeviceContext {
 public:
64
  CPUDeviceContext();
Q
qijun 已提交
65
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
66

67
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
68

69 70
  Eigen::ThreadPoolDevice* eigen_pool_device() const;

L
liaogang 已提交
71
  Place GetPlace() const override;
Y
Yu Yang 已提交
72

73 74
  inline void InitPoolDevice();

Q
qijun 已提交
75
 private:
D
dzhwinter 已提交
76
  CPUPlace place_;
Q
qijun 已提交
77
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
78 79
  std::unique_ptr<Eigen::ThreadPoolDevice> eigen_pool_device_;
  std::unique_ptr<Eigen::ThreadPool> eigen_threadpool_;
Q
QI JUN 已提交
80 81
};

Y
Yang Yu 已提交
82 83 84 85 86 87 88 89
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  XPUPlace place_;
  xpu::Context* context_;

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

119
#ifdef PADDLE_WITH_CUDA
120

Q
qijun 已提交
121
class EigenCudaStreamDevice;
122
class CudnnWorkspaceHandle;
S
sneaxiy 已提交
123

124 125 126 127 128
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
129
      const stream::Priority& priority = stream::Priority::kNormal);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

  const cudaStream_t& RawStream() { return stream_->raw_stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

G
Guo Sheng 已提交
149 150 151 152
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
#endif
    }
  }

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
210
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
211
      PADDLE_ENFORCE_CUDA_SUCCESS(
212
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
213 214 215 216 217
    } else {
      cudnn_handle_ = nullptr;
    }
  }

G
Guo Sheng 已提交
218 219 220 221 222 223 224
  void InitCuSolverContext() {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }

225 226
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
227
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
228 229 230 231 232 233 234 235 236
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
  }

G
Guo Sheng 已提交
237 238 239 240 241 242 243
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }

244 245 246 247 248 249 250
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
G
Guo Sheng 已提交
251
  cusolverDnHandle_t cusolver_dn_handle_;
252 253 254
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

255
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
256
 public:
D
dzhwinter 已提交
257
  explicit CUDADeviceContext(CUDAPlace place);
258
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
259

260
  /*! \brief  Wait for all operations completion in the stream. */
261
  void Wait() const override;
Q
QI JUN 已提交
262

263
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
264
  Place GetPlace() const override;
265

K
Kexin Zhao 已提交
266
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
267 268
  int GetComputeCapability() const;

269 270 271
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

272 273 274 275 276 277
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

278 279 280
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

281 282 283
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

284 285 286
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
287
    return context()->CublasCall(callback);
288 289 290 291 292 293 294 295 296
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
297
    return context()->TensorCoreCublasCallIfAvailable(callback);
298
  }
S
sneaxiy 已提交
299

300
  /*! \brief  Return cudnn  handle in the device context. */
301
  cudnnHandle_t cudnn_handle() const;
302

S
sneaxiy 已提交
303 304 305 306 307 308 309 310 311
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

G
Guo Sheng 已提交
312 313
  cusolverDnHandle_t cusolver_dn_handle() const;

Q
init  
qijun 已提交
314
  /*! \brief  Return cuda stream in the device context. */
315
  cudaStream_t stream() const;
Q
QI JUN 已提交
316

317
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
318 319 320 321 322
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
323
#endif
Q
qingqing01 已提交
324

Y
Yu Yang 已提交
325
  template <typename Callback>
326 327
  void RecordEvent(cudaEvent_t ev, Callback callback) const {
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
328 329
  }

S
sneaxiy 已提交
330 331
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
332 333 334 335 336
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
337 338
  }

339
  void ResetDefaultContext(const stream::Priority& priority) {
340 341 342
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

343
  void ResetThreadContext(const stream::Priority& priority) {
344 345 346 347 348 349 350 351 352 353
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
354

Q
QI JUN 已提交
355
 private:
D
dzhwinter 已提交
356
  CUDAPlace place_;
357
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
358

359 360 361 362 363 364
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
365

366 367
  mutable std::mutex cudnn_handle_mtx_;

368
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
369 370 371 372 373 374
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
375
#endif
Q
qingqing01 已提交
376

C
chengduo 已提交
377 378 379 380 381
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
382
  int max_threads_per_block_;
383
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
384

385
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
386
};
Q
qijun 已提交
387

388 389
class CudnnWorkspaceHandle {
 public:
390 391
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
392 393 394 395 396 397 398 399

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
400 401 402 403
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
404 405 406 407 408 409 410 411 412 413 414 415 416
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

417
  void ReallocWorkspace(size_t required_workspace_bytes);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
434
  std::mutex* mtx_;
435 436
};

Y
Yang Yu 已提交
437 438
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
439
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
440 441
};

C
chengduoZH 已提交
442
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
443 444 445 446 447 448
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
449

C
chengduoZH 已提交
450 451 452 453 454 455 456 457 458 459 460
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
461
#endif
Q
qijun 已提交
462

T
tensor-tang 已提交
463
#ifdef PADDLE_WITH_MKLDNN
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;

    Body();
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
504

T
tensor-tang 已提交
505 506
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
524 525 526
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
527
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
528

529
  // Remove all entries from the blob map
530 531 532 533
  void ResetBlobMap();

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
534

535 536 537
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

538 539
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
540

541 542
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
543

544 545 546 547
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
548
 private:
549
  mkldnn::engine engine_;
550 551
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
552
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
553 554 555
};
#endif

D
dzhwinter 已提交
556 557 558 559 560
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
561
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
562 563 564
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
565 566 567 568
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
569
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
570 571 572 573 574 575
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

576 577
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
578
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
579
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
580

Y
Yang Yu 已提交
581 582 583 584 585 586 587
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

588 589
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
590 591
 private:
  static DeviceContextPool* pool;
592 593
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
594 595 596
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
597 598
}  // namespace platform
}  // namespace paddle