recurrent_op.cc 29.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15
#include "paddle/fluid/operators/recurrent_op.h"
W
wanghuancoder 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace framework {
class InferShapeContext;
class LoDTensor;
class OpDesc;
}  // namespace framework
}  // namespace paddle
Y
Yan Chunwei 已提交
24 25 26 27

namespace paddle {
namespace operators {

Y
Yu Yang 已提交
28 29
using StepScopeVar = std::vector<framework::Scope *>;

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
const char RecurrentBase::kInputs[] = "inputs";
const char RecurrentBase::kInitialStates[] = "initial_states";
const char RecurrentBase::kParameters[] = "parameters";
const char RecurrentBase::kOutputs[] = "outputs";
const char RecurrentBase::kStepScopes[] = "step_scopes";
const char RecurrentBase::kHasStates[] = "has_states";
const char RecurrentBase::kExStates[] = "ex_states";
const char RecurrentBase::kStates[] = "states";
const char RecurrentBase::kStepBlock[] = "sub_block";
const char RecurrentBase::kReverse[] = "reverse";
const char RecurrentBase::kIsTrain[] = "is_train";
const char RecurrentBase::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";
#define GRAD_SUFFIX "@GRAD"
const char RecurrentBase::kInputGrads[] = "inputs" GRAD_SUFFIX;
const char RecurrentBase::kOutputGrads[] = "outputs" GRAD_SUFFIX;
const char RecurrentBase::kParamGrads[] = "parameters" GRAD_SUFFIX;
const char RecurrentBase::kInitStateGrads[] = "initial_states" GRAD_SUFFIX;

48 49 50 51 52 53 54 55
static void ClearStepScopes(const platform::DeviceContext &dev_ctx,
                            framework::Scope *parent_scope,
                            StepScopeVar *step_scopes) {
  if (step_scopes->empty()) return;

  dev_ctx.Wait();

  for (auto *sub_scope : *step_scopes) {
56 57 58
    if (parent_scope->HasKid(sub_scope)) {
      parent_scope->DeleteScope(sub_scope);
    }
59 60 61 62 63
  }

  step_scopes->clear();
}

64 65 66 67 68 69 70 71
StepScopes::StepScopes(const platform::DeviceContext &dev_ctx,
                       const framework::Scope &parent, StepScopeVar *scopes,
                       bool is_train, size_t seq_len, bool is_backward)
    : counter_(is_backward ? seq_len - 1 : 0UL),
      scopes_(scopes),
      is_train_(is_train),
      is_backward_(is_backward) {
  size_t num_step_scopes = is_train ? seq_len : 2;
72
  PADDLE_ENFORCE_EQ(is_train || !is_backward, true,
73 74
                    platform::errors::PreconditionNotMet(
                        "Cannot backward when is not training"));
75 76 77 78 79
  if (!is_backward_) {
    ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&parent), scopes);
    scopes->reserve(static_cast<size_t>(num_step_scopes));
    for (size_t i = 0; i < num_step_scopes; ++i) {
      scopes->emplace_back(&parent.NewScope());
Y
Yan Chunwei 已提交
80
    }
Y
Yu Yang 已提交
81
  }
82 83 84
}

framework::Scope &StepScopes::CurScope() { return GetScope(counter_); }
Y
Yu Yang 已提交
85

86 87 88 89
framework::Scope &StepScopes::ExScope() {
  auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
  return scope;
}
Y
Yu Yang 已提交
90

91 92 93
void StepScopes::BackwardNext(const platform::DeviceContext &dev_ctx,
                              framework::Scope *parent_scope) {
  PADDLE_ENFORCE_EQ(is_backward_, true,
94 95
                    platform::errors::PreconditionNotMet(
                        "Cannot get backward next scope when is forward"));
96 97 98 99
  if (counter_ + 2 == scopes_->size()) {
    parent_scope->DeleteScope((*scopes_)[counter_ + 1]);
    scopes_->pop_back();
    VLOG(3) << "Deleted scope at " << counter_ + 1;
Y
Yu Yang 已提交
100
  }
101 102 103 104 105
  --counter_;
}

void StepScopes::ForwardNext() {
  PADDLE_ENFORCE_EQ(is_backward_, false,
106 107
                    platform::errors::PreconditionNotMet(
                        "Cannot get forward next scope when is backward"));
108
  ++counter_;
109
}
Y
Yu Yang 已提交
110

111 112 113
framework::Scope &StepScopes::GetScope(size_t scope_id) const {
  if (!is_train_) {
    scope_id %= 2;
Y
Yu Yang 已提交
114
  }
115 116 117 118
  PADDLE_ENFORCE_LT(
      scope_id, scopes_->size(),
      platform::errors::InvalidArgument(
          "Input scope_id is greater than scopes size in RecurrentOp"));
119 120
  return *(*scopes_)[scope_id];
}
Y
Yu Yang 已提交
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
RecurrentBase::RecurrentBase(const std::string &type,
                             const framework::VariableNameMap &inputs,
                             const framework::VariableNameMap &outputs,
                             const framework::AttributeMap &attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

// Get SequenceLength from Scope
//   The sequence length is got from input tensor. The input tensor's
//   dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
//   is SEQ_LEN. The second of the tensor's shape could be the batch size or
//   nested sequence length.
int64_t RecurrentBase::GetSequenceLength(const framework::Scope &scope) const {
  // Dim format SEQ_LEN, BATCH_SIZE, ...
  int64_t seq_len = -1;
  auto &all_inputs = Inputs(kInputs);
137 138 139
  PADDLE_ENFORCE_EQ(
      all_inputs.empty(), false,
      platform::errors::InvalidArgument("RecurrentOp gets empty input"));
140 141
  for (auto &iname : all_inputs) {
    auto *var = scope.FindVar(iname);
142 143 144 145 146 147 148 149
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "RecurrentOp finds var %s is NULL", iname));
    PADDLE_ENFORCE_EQ(var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "RecurrentOp only accepts LoDTensor as input but "
                          "input var %s is not LoDTensor",
                          iname));
150 151 152 153
    auto &dim = var->Get<framework::LoDTensor>().dims();
    if (seq_len == -1) {
      seq_len = dim[0];
    } else {
154 155 156 157 158
      PADDLE_ENFORCE_EQ(seq_len, dim[0],
                        platform::errors::InvalidArgument(
                            "Sequence length of input %s in RecurrentOp is NOT "
                            "equal to sequence length of previous input",
                            iname));
Y
Yu Yang 已提交
159 160
    }
  }
161 162
  PADDLE_ENFORCE_GE(seq_len, 0,
                    platform::errors::InvalidArgument(
163 164 165
                        "RecurrentOp gets invalid sequence length. Expected "
                        "seq_len >= 0. Received seq_len = %d",
                        seq_len));
166 167
  return seq_len;
}
Y
Yu Yang 已提交
168

169 170 171 172 173 174 175 176 177 178 179 180 181
// for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
//                                   map(dst_scope.Var, dst_vars)):
//   dst_tensor.ShareDataWith(src_tensor)
void RecurrentBase::LinkTensor(const framework::Scope &src_scope,
                               const std::vector<std::string> &src_vars,
                               framework::Scope *dst_scope,
                               const std::vector<std::string> &dst_vars) {
  LinkTensorWithCallback(
      src_scope, src_vars, dst_scope, dst_vars,
      [&](const framework::Tensor &src, framework::Tensor *dst) {
        dst->ShareDataWith(src);
      });
}
Y
Yu Yang 已提交
182

183 184 185 186 187 188 189
// (seq_len, shape) -> return [seq_len] + list(shape)
framework::DDim RecurrentBase::PrependDims(size_t seq_len,
                                           const framework::DDim &src) {
  auto dims = framework::vectorize(src);
  dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
  return framework::make_ddim(dims);
}
Y
Yu Yang 已提交
190

191 192 193 194 195
RecurrentOp::RecurrentOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
    : RecurrentBase(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
196

197 198 199 200
void RecurrentOp::RunImpl(const framework::Scope &scope,
                          const platform::Place &place) const {
  bool has_state = Attr<bool>(kHasStates);
  auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));
Y
Yu Yang 已提交
201

202 203 204
  // get device context from pool
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &dev_ctx = *pool.Get(place);
Y
Yu Yang 已提交
205

206 207
  VLOG(3) << "Static RNN input sequence length = " << seq_len;
  auto reverse = Attr<bool>(kReverse);
Y
Yu Yang 已提交
208

209 210
  framework::Executor executor(place);
  auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yu Yang 已提交
211

212 213 214 215
  auto *program = block->Program();
  auto ctx = executor.Prepare(
      *program, block->ID(), Attr<std::vector<std::string>>(
                                 kSkipEagerDeletionVars) /*skip_ref_cnt_vars*/);
Y
Yu Yang 已提交
216

217 218 219 220 221 222 223
  static std::mutex mutex;
  std::lock_guard<std::mutex> lock(mutex);
  StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
  // TODO(gfwm2013) Function CreateStepScopes would make segmentation fault in
  // multithreading in eval process, so we use a mutex before function
  // CreateStepScopes to make sure that the computing process is correct. This
  // problem will fix in next pull request.
224 225 226
  for (size_t i = 0; i < seq_len; ++i) {
    size_t seq_offset = reverse ? seq_len - i - 1 : i;
    VLOG(3) << "Recurrent operate at the time step " << seq_offset;
Y
Yu Yang 已提交
227

228
    auto &cur_scope = scopes.CurScope();
Y
Yu Yang 已提交
229

230 231 232 233 234 235 236 237 238 239 240
    // Link outside::input --> inside::input
    //   inside::input = outside::input[seq_offset: seq_offset+1]
    LinkTensorWithCallback(
        scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
        [&seq_offset](const framework::Tensor &outside,
                      framework::Tensor *inside) {
          inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
          auto dims = framework::vectorize(inside->dims());
          dims.erase(dims.begin());
          inside->Resize(framework::make_ddim(dims));
        });
Y
Yu Yang 已提交
241

242 243 244 245 246 247 248 249 250 251 252
    if (has_state) {
      if (i == 0) {
        // Link initial states  --> ex_states
        LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
                   Attr<std::vector<std::string>>(kExStates));
      } else {
        auto &ex_scope = scopes.ExScope();
        // Link ex_scope::state --> cur_scope::ex_state
        LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
                   &cur_scope, Attr<std::vector<std::string>>(kExStates));
      }
Y
Yu Yang 已提交
253 254
    }

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    // Link inside::output -> outside::output
    //   outside::output[seq_offset: seq_offset + 1] = inside::output
    executor.CreateVariables(ctx->prog_, &cur_scope, ctx->block_id_);
    if (i > 0) {
      LinkTensorWithCallback(scope, Outputs(kOutputs), cur_scope,
                             Outputs(kOutputs),
                             [&](const framework::LoDTensor &src_tensor,
                                 framework::LoDTensor *dst_tensor) {
                               framework::Tensor src_slice =
                                   src_tensor.Slice(seq_offset, seq_offset + 1);
                               dst_tensor->ShareDataWith(src_slice);
                             });
    }

    // Linked now, execute!
270 271
    executor.RunPreparedContext(ctx.get(), &cur_scope,
                                false /*create_local_scope*/,
272 273 274 275 276 277 278
                                false /*create_vars*/, true /* keep_kids */);
    if (i == 0) {
      LinkTensorWithCallback(
          cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
          [&](const framework::LoDTensor &src_tensor,
              framework::LoDTensor *dst_tensor) {
            // create output tensor at begin
279 280 281
            dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
            dst_tensor->mutable_data(place, src_tensor.type());

282 283 284 285 286 287
            auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
            // Explicit copy output since the local RNN scope can be destroyed
            // early.
            framework::TensorCopy(src_tensor, place, dev_ctx, &dst_out);
          });
    }
288

289
    scopes.ForwardNext();
Y
Yu Yang 已提交
290
  }
291
}
Y
Yu Yang 已提交
292

293 294 295 296
StepScopes RecurrentOp::CreateStepScopes(const platform::DeviceContext &dev_ctx,
                                         const framework::Scope &scope,
                                         size_t seq_len) const {
  auto *var = scope.FindVar(Output(kStepScopes));
297 298
  PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                   "RecurrentOp gets empty StepScopes var"));
299 300 301
  return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
                    Attr<bool>(kIsTrain), seq_len);
}
Y
Yu Yang 已提交
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
RecurrentGradOp::RecurrentGradOp(const std::string &type,
                                 const framework::VariableNameMap &inputs,
                                 const framework::VariableNameMap &outputs,
                                 const framework::AttributeMap &attrs)
    : RecurrentBase(type, inputs, outputs, attrs) {}

void RecurrentGradOp::RunImpl(const framework::Scope &scope,
                              const platform::Place &place) const {
  bool has_state = Attr<bool>(kHasStates);
  const size_t seq_len = static_cast<size_t>(GetSequenceLength(scope));

  // get device context from pool
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &dev_ctx = *pool.Get(place);

  StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
  auto reverse = Attr<bool>(kReverse);

  framework::Executor executor(place);
  auto *block = Attr<framework::BlockDesc *>(kStepBlock);
  auto *program = block->Program();
  auto ctx = executor.Prepare(
      *program, block->ID(), Attr<std::vector<std::string>>(
                                 kSkipEagerDeletionVars) /*skip_ref_cnt_vars*/);

  for (size_t step_id = 0; step_id < seq_len; ++step_id) {
    size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
    VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
    auto &cur_scope = scopes.CurScope();

    // Link outside::output_grads --> inside::output_grads
    //   inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
    LinkTensorWithCallback(
        scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
        [&](const framework::Tensor &outside, framework::Tensor *inside) {
          inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
          auto dims = framework::vectorize(inside->dims());
          dims.erase(dims.begin());
          inside->Resize(framework::make_ddim(dims));
        },
        true /*is_backward*/);
    auto og_set = List2Set(Inputs(kOutputGrads));

    if (VLOG_IS_ON(10)) {
      std::ostringstream sout;
      std::copy(og_set.begin(), og_set.end(),
                std::ostream_iterator<std::string>(sout, ","));
      VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
    }

    if (has_state) {
      // Link states
      //   if cur_scope::cur_state_grad in out_grads:
      //     cur_scope::cur_state_grad += ex_scope::ex_state_grad
      //   else:
      //     ex_scope::ex_state_grad --> cur_scope::cur_state_grad
      if (step_id != 0) {  // not at beginning
        auto &ex_scope = scopes.ExScope();
        auto ex_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kExStates));
        auto cur_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kStates));

366 367 368 369
        PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size(),
                          platform::errors::InvalidArgument(
                              "lengths of ex_states and cur_states are not "
                              "equal in RecurrentGradOp"));
370 371 372
        for (size_t i = 0; i < ex_state_grads.size(); ++i) {
          auto &cur_grad = cur_state_grads[i];
          auto &ex_grad = ex_state_grads[i];
373
          auto &ex_grad_tensor =
374 375 376 377
              ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();

          VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
          auto *cur_grad_var = cur_scope.Var(cur_grad);
378
          framework::LoDTensor *cur_grad_tensor =
379
              cur_grad_var->GetMutable<framework::LoDTensor>();
380
          cur_grad_tensor->ShareDataWith(ex_grad_tensor);
Y
Yu Yang 已提交
381
        }
Y
Yan Chunwei 已提交
382
      }
383
    }
Y
Yu Yang 已提交
384

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    // Link inside::output -> outside::output
    //   outside::output[seq_offset: seq_offset + 1] = inside::output
    executor.CreateVariables(ctx->prog_, &cur_scope, ctx->block_id_);
    if (step_id > 0) {
      LinkTensorWithCallback(scope, Outputs(kInputGrads), cur_scope,
                             GradVarLists(Inputs(kInputs)),
                             [&](const framework::LoDTensor &src_tensor,
                                 framework::LoDTensor *dst_tensor) {
                               if (src_tensor.memory_size() ==
                                   0) {  // Inside Gradient is not created.
                                 return;
                               }
                               framework::Tensor src_slice =
                                   src_tensor.Slice(seq_offset, seq_offset + 1);
                               dst_tensor->ShareDataWith(src_slice);
                             },
                             true /*is_backward*/);
    }

404 405 406 407
    VLOG(5) << "Recurrent memory linking finished ";
    // Run step block with cur_scope
    executor.RunPreparedContext(ctx.get(), &cur_scope,
                                false /*create_local_scope*/,
408
                                false /*create_vars*/, true /* keep_kids */);
Y
Yu Yang 已提交
409

410
    VLOG(5) << "executor.Run finished ";
Y
Yu Yang 已提交
411

412
    auto local_var_names = LocalVarNames(cur_scope);
Y
Yu Yang 已提交
413

414 415 416 417 418 419 420
    // Accumulate params
    //   if (step == 0):
    //      outside::param_grad = 0.0
    //   outside::param_grad += inside::param_grad
    {
      auto &pg_names = Outputs(kParamGrads);
      auto &p_names = Inputs(kParameters);
421 422 423 424
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size(),
                        platform::errors::InvalidArgument(
                            "Sizes of Parameters and ParamGrads are not equal "
                            "in RecurrentGradOp"));
Y
Yu Yang 已提交
425

426 427
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yu Yang 已提交
428

429 430 431 432 433
        // If does not compute gradient of that variable inside rnn, just
        // continue
        if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
          continue;
        }
Y
Yu Yang 已提交
434

435 436 437 438 439 440
        // zero gradient variable in step 0
        if (step_id == 0) {
          auto &inside_tensor =
              cur_scope.FindVar(inside_grad_name)->Get<framework::LoDTensor>();
          framework::AttributeMap attrs;
          attrs["dtype"] = inside_tensor.type();
441
          attrs["shape"] = framework::vectorize<int>(inside_tensor.dims());
442 443 444 445 446 447 448
          attrs["value"] = 0.0f;

          auto zero_op = framework::OpRegistry::CreateOp(
              "fill_constant", framework::VariableNameMap{},
              {{"Out", {pg_names[param_id]}}}, attrs);
          zero_op->Run(scope, place);
        }
Y
Yu Yang 已提交
449

450
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yu Yang 已提交
451

452 453 454 455 456 457
        // sum gradient
        auto sum_op = framework::OpRegistry::CreateOp(
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
            {{"Out", {pg_names[param_id]}}},
            framework::AttributeMap{{"use_mkldnn", {false}}});
        sum_op->Run(cur_scope, place);
Y
Yu Yang 已提交
458

459
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yan Chunwei 已提交
460
      }
461 462 463 464 465
    }
    VLOG(5) << "Accumulate Parameter finished ";

    // Copy input gradient from inside to outside
    //   outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
466 467 468 469 470 471 472 473 474
    if (step_id == 0) {
      LinkTensorWithCallback(
          cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
          [&](const framework::LoDTensor &inside,
              framework::LoDTensor *outside) {
            if (inside.memory_size() == 0) {  // IG is not created.
              return;
            }
            // Alloc outside memory
475 476 477
            outside->Resize(PrependDims(seq_len, inside.dims()));
            outside->mutable_data(place, inside.type());

478 479 480 481 482
            auto dst = outside->Slice(seq_offset, seq_offset + 1);
            framework::TensorCopy(inside, place, dev_ctx, &dst);
          },
          true /*is_backward*/);
    }
483 484 485 486 487 488 489 490 491 492 493
    VLOG(5) << "Link outside gradient finished ";

    if (has_state) {
      if (step_id + 1 == seq_len) {  // at_end
        // copy initialize states gradient from inside to outside
        LinkTensorWithCallback(
            cur_scope, GradVarLists(Attr<std::vector<std::string>>(kExStates)),
            scope, Outputs(kInitStateGrads),
            [&](const framework::LoDTensor &inside,
                framework::LoDTensor *outside) {
              outside->Resize(inside.dims());
D
dzhwinter 已提交
494
              outside->mutable_data(place, inside.type());
495 496 497 498
              framework::TensorCopy(inside, place, dev_ctx, outside);
            },
            true /*is_backward*/);
        VLOG(5) << "Link initialize state gradient finished ";
Y
Yu Yang 已提交
499
      }
Y
Yan Chunwei 已提交
500
    }
501
    scopes.BackwardNext(dev_ctx, const_cast<framework::Scope *>(&scope));
Y
Yan Chunwei 已提交
502
  }
503 504
  // Delete the scope of StepScopes
  auto *var = scope.FindVar(Input(kStepScopes));
505 506 507
  PADDLE_ENFORCE_NOT_NULL(var,
                          platform::errors::InvalidArgument(
                              "StepScopes var is empty in RecurrentGradOp"));
508 509 510
  auto *step_scopes = var->GetMutable<StepScopeVar>();
  ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&scope), step_scopes);
}
Y
Yu Yang 已提交
511

512 513 514 515
StepScopes RecurrentGradOp::CreateStepScopes(
    const platform::DeviceContext &dev_ctx, const framework::Scope &scope,
    size_t seq_len) const {
  auto *var = scope.FindVar(Input(kStepScopes));
516 517 518
  PADDLE_ENFORCE_NOT_NULL(var,
                          platform::errors::InvalidArgument(
                              "StepScopes var is empty in RecurrentGradOp"));
519 520 521
  return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
                    Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
}
Y
Yu Yang 已提交
522

523 524 525 526 527 528
std::unordered_set<std::string> RecurrentGradOp::List2Set(
    const std::vector<std::string> &list) const {
  std::unordered_set<std::string> local_var_name_set;
  local_var_name_set.reserve(list.size());
  for (auto &each : list) {
    local_var_name_set.insert(each);
Y
Yu Yang 已提交
529
  }
530 531
  return local_var_name_set;
}
Y
Yu Yang 已提交
532

533 534 535 536
std::unordered_set<std::string> RecurrentGradOp::LocalVarNames(
    const framework::Scope &scope) const {
  return this->List2Set(scope.LocalVarNames());
}
537

538 539 540 541 542 543 544 545
std::vector<std::string> RecurrentGradOp::GradVarLists(
    const std::vector<std::string> &var_names) {
  std::vector<std::string> retv;
  retv.reserve(var_names.size());
  std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
                 framework::GradVarName);
  return retv;
}
Y
Yu Yang 已提交
546 547

class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
548
 public:
Y
Yu Yang 已提交
549
  void Make() override {
550 551 552 553
    AddInput(RecurrentBase::kInputs, "rnn inputs").AsDuplicable();
    AddInput(RecurrentBase::kInitialStates, "rnn initial states")
        .AsDuplicable();
    AddInput(RecurrentBase::kParameters,
Y
Yu Yang 已提交
554
             "Parameters are used by step block as its input. However, the "
K
kexinzhao 已提交
555 556
             "input is not a sequence tensor. Every time step, each operator "
             "in step block just use the parameter directly.")
Y
Yu Yang 已提交
557
        .AsDuplicable();
558
    AddOutput(RecurrentBase::kOutputs,
K
kexinzhao 已提交
559
              "The output sequence of RNN. The sequence length must be same.")
Y
Yu Yang 已提交
560
        .AsDuplicable();
561
    AddOutput(RecurrentBase::kStepScopes,
K
kexinzhao 已提交
562
              "StepScopes contain all local variables in each time step.");
563 564 565 566 567 568
    AddAttr<bool>(RecurrentBase::kHasStates, "Whether has states.")
        .SetDefault(false);
    AddAttr<std::vector<std::string>>(
        RecurrentBase::kExStates,
        string::Sprintf(
            R"DOC(The ex-state variable names.
Y
Yu Yang 已提交
569 570
The ex-state means the state value in the ex-timestep or the previous time step
[%s, %s, %s] must be the same order)DOC",
571 572
            RecurrentBase::kExStates, RecurrentBase::kStates,
            RecurrentBase::kInitStateGrads));
Y
Yu Yang 已提交
573
    AddAttr<std::vector<std::string>>(
574
        RecurrentBase::kStates,
Y
Yu Yang 已提交
575 576
        string::Sprintf(
            "The state variable names. [%s, %s, %s] must be the same order",
577 578 579 580 581
            RecurrentBase::kExStates, RecurrentBase::kStates,
            RecurrentBase::kInitStateGrads));
    AddAttr<framework::BlockDesc *>(RecurrentBase::kStepBlock,
                                    "The step block inside RNN");
    AddAttr<bool>(RecurrentBase::kReverse, R"DOC(Calculate RNN reversely or not.
Y
Yu Yang 已提交
582
By default reverse=False
Y
Yan Chunwei 已提交
583

Y
Yu Yang 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
Assume the input data is [A, B, C, D]

if reverse is False:
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn -----> rnn -----> rnn ----> rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o

if reverse is True
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn <----- rnn <----- rnn <---- rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o
)DOC").SetDefault(false);
606 607 608 609 610 611
    AddAttr<bool>(RecurrentBase::kIsTrain, "").SetDefault(true);
    AddAttr<std::vector<std::string>>(RecurrentBase::kSkipEagerDeletionVars,
                                      "Vars that would skip eager deletion."
                                      "Users should not set this manually.")
        .SetDefault(std::vector<std::string>());

K
kexinzhao 已提交
612 613 614 615 616
    AddComment(R"DOC(
Static Length Recurrent Operator.

The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
Y
Yu Yang 已提交
617 618 619 620 621

)DOC");
  }
};

H
hong 已提交
622 623
template <typename T>
class RecurrentGradOpMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
624
 public:
H
hong 已提交
625
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yan Chunwei 已提交
626

Y
Yu Yang 已提交
627
 protected:
628
  void Apply(GradOpPtr<T> grad) const override {
Y
Yu Yang 已提交
629 630 631 632
    grad->SetType("recurrent_grad");
    for (auto &input_param : this->InputNames()) {
      grad->SetInput(input_param, this->Input(input_param));
      grad->SetOutput(framework::GradVarName(input_param),
633
                      this->InputGrad(input_param, false));
Y
Yu Yang 已提交
634 635 636
    }

    for (auto &output_param : this->OutputNames()) {
637
      if (output_param == RecurrentBase::kStepScopes) {
Y
Yu Yang 已提交
638 639 640 641 642 643 644 645 646 647
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->Output(output_param));
      } else {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->OutputGrad(output_param));
      }
    }
    grad->SetAttrMap(this->Attrs());
H
hong 已提交
648
    grad->SetBlockAttr(RecurrentBase::kStepBlock, this->grad_block_[0]);
Y
Yan Chunwei 已提交
649 650 651
  }
};

Y
Yu Yang 已提交
652 653 654
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
655
    std::vector<std::string> output{RecurrentBase::kOutputs};
C
chengduo 已提交
656 657 658

    // In some case the kInitialStates is empty.
    // If the kInitialStates is empty, all the states should be empty.
659
    if (!ctx->HasInputs(RecurrentBase::kInitialStates)) {
C
chengduo 已提交
660
      PADDLE_ENFORCE_EQ(
661 662 663
          ctx->Attrs()
              .Get<std::vector<std::string>>(RecurrentBase::kExStates)
              .size(),
664 665
          0, platform::errors::InvalidArgument("The Attr(%s) should be empty.",
                                               RecurrentBase::kExStates));
C
chengduo 已提交
666
      PADDLE_ENFORCE_EQ(
667 668 669
          ctx->Attrs()
              .Get<std::vector<std::string>>(RecurrentBase::kStates)
              .size(),
670 671
          0, platform::errors::InvalidArgument("The Attr(%s) should be empty.",
                                               RecurrentBase::kStates));
Y
Yu Yang 已提交
672
    }
C
chengduo 已提交
673

674 675 676 677 678 679 680 681
    PADDLE_ENFORCE_EQ(
        ctx->HasInputs(RecurrentBase::kInputs), true,
        platform::errors::InvalidArgument("The input(%s) should not be empty.",
                                          RecurrentBase::kInputs));
    PADDLE_ENFORCE_EQ(
        ctx->HasInputs(RecurrentBase::kOutputs), true,
        platform::errors::InvalidArgument("The input(%s) should not be empty.",
                                          RecurrentBase::kOutputs));
C
chengduo 已提交
682 683

    // In some case the kInitialStates is empty.
684 685 686
    if (ctx->HasInputs(RecurrentBase::kInitialStates) &&
        ctx->HasOutputs(
            framework::GradVarName(RecurrentBase::kInitialStates))) {
687 688
      ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kInitialStates),
                         ctx->GetInputsDim(RecurrentBase::kInitialStates));
Y
Yan Chunwei 已提交
689
    }
C
chengduo 已提交
690

691 692
    PADDLE_ENFORCE_EQ(
        ctx->HasOutputs(framework::GradVarName(RecurrentBase::kInputs)), true,
693 694 695
        platform::errors::InvalidArgument(
            "The output of(%s) should not be empty.",
            framework::GradVarName(RecurrentBase::kInputs)));
696 697
    ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kInputs),
                       ctx->GetInputsDim(RecurrentBase::kInputs));
C
chengduo 已提交
698 699

    // In some case the kParameters is empty.
700
    if (ctx->HasInputs(RecurrentBase::kParameters)) {
701
      PADDLE_ENFORCE_EQ(
702
          ctx->HasOutputs(framework::GradVarName(RecurrentBase::kParameters)),
703 704 705
          true, platform::errors::InvalidArgument(
                    "The output of(%s) should not be empty.",
                    framework::GradVarName(RecurrentBase::kParameters)));
706 707
      ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kParameters),
                         ctx->GetInputsDim(RecurrentBase::kParameters));
Y
Yu Yang 已提交
708 709 710
    }
  }
};
Y
Yan Chunwei 已提交
711 712 713 714

}  // namespace operators
}  // namespace paddle

H
hong 已提交
715 716 717 718
REGISTER_OPERATOR(
    recurrent, paddle::operators::RecurrentOp,
    paddle::operators::RecurrentOpProtoMaker,
    paddle::operators::RecurrentGradOpMaker<paddle::framework::OpDesc>);
Y
Yu Yang 已提交
719 720
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
                  paddle::operators::RecurrentGradOpShapeInference);