recurrent_op.cc 29.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15 16
#include "paddle/fluid/operators/recurrent_op.h"
#include <algorithm>
W
wanghuancoder 已提交
17 18 19 20 21 22 23 24

namespace paddle {
namespace framework {
class InferShapeContext;
class LoDTensor;
class OpDesc;
}  // namespace framework
}  // namespace paddle
Y
Yan Chunwei 已提交
25 26 27 28

namespace paddle {
namespace operators {

Y
Yu Yang 已提交
29 30
using StepScopeVar = std::vector<framework::Scope *>;

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
const char RecurrentBase::kInputs[] = "inputs";
const char RecurrentBase::kInitialStates[] = "initial_states";
const char RecurrentBase::kParameters[] = "parameters";
const char RecurrentBase::kOutputs[] = "outputs";
const char RecurrentBase::kStepScopes[] = "step_scopes";
const char RecurrentBase::kHasStates[] = "has_states";
const char RecurrentBase::kExStates[] = "ex_states";
const char RecurrentBase::kStates[] = "states";
const char RecurrentBase::kStepBlock[] = "sub_block";
const char RecurrentBase::kReverse[] = "reverse";
const char RecurrentBase::kIsTrain[] = "is_train";
const char RecurrentBase::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";
#define GRAD_SUFFIX "@GRAD"
const char RecurrentBase::kInputGrads[] = "inputs" GRAD_SUFFIX;
const char RecurrentBase::kOutputGrads[] = "outputs" GRAD_SUFFIX;
const char RecurrentBase::kParamGrads[] = "parameters" GRAD_SUFFIX;
const char RecurrentBase::kInitStateGrads[] = "initial_states" GRAD_SUFFIX;

49 50 51 52 53 54 55 56
static void ClearStepScopes(const platform::DeviceContext &dev_ctx,
                            framework::Scope *parent_scope,
                            StepScopeVar *step_scopes) {
  if (step_scopes->empty()) return;

  dev_ctx.Wait();

  for (auto *sub_scope : *step_scopes) {
57 58 59
    if (parent_scope->HasKid(sub_scope)) {
      parent_scope->DeleteScope(sub_scope);
    }
60 61 62 63 64
  }

  step_scopes->clear();
}

65 66 67 68 69 70 71 72
StepScopes::StepScopes(const platform::DeviceContext &dev_ctx,
                       const framework::Scope &parent, StepScopeVar *scopes,
                       bool is_train, size_t seq_len, bool is_backward)
    : counter_(is_backward ? seq_len - 1 : 0UL),
      scopes_(scopes),
      is_train_(is_train),
      is_backward_(is_backward) {
  size_t num_step_scopes = is_train ? seq_len : 2;
73
  PADDLE_ENFORCE_EQ(is_train || !is_backward, true,
74 75
                    platform::errors::PreconditionNotMet(
                        "Cannot backward when is not training"));
76 77 78 79 80
  if (!is_backward_) {
    ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&parent), scopes);
    scopes->reserve(static_cast<size_t>(num_step_scopes));
    for (size_t i = 0; i < num_step_scopes; ++i) {
      scopes->emplace_back(&parent.NewScope());
Y
Yan Chunwei 已提交
81
    }
Y
Yu Yang 已提交
82
  }
83 84 85
}

framework::Scope &StepScopes::CurScope() { return GetScope(counter_); }
Y
Yu Yang 已提交
86

87 88 89 90
framework::Scope &StepScopes::ExScope() {
  auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
  return scope;
}
Y
Yu Yang 已提交
91

92 93 94
void StepScopes::BackwardNext(const platform::DeviceContext &dev_ctx,
                              framework::Scope *parent_scope) {
  PADDLE_ENFORCE_EQ(is_backward_, true,
95 96
                    platform::errors::PreconditionNotMet(
                        "Cannot get backward next scope when is forward"));
97 98 99 100
  if (counter_ + 2 == scopes_->size()) {
    parent_scope->DeleteScope((*scopes_)[counter_ + 1]);
    scopes_->pop_back();
    VLOG(3) << "Deleted scope at " << counter_ + 1;
Y
Yu Yang 已提交
101
  }
102 103 104 105 106
  --counter_;
}

void StepScopes::ForwardNext() {
  PADDLE_ENFORCE_EQ(is_backward_, false,
107 108
                    platform::errors::PreconditionNotMet(
                        "Cannot get forward next scope when is backward"));
109
  ++counter_;
110
}
Y
Yu Yang 已提交
111

112 113 114
framework::Scope &StepScopes::GetScope(size_t scope_id) const {
  if (!is_train_) {
    scope_id %= 2;
Y
Yu Yang 已提交
115
  }
116 117 118 119
  PADDLE_ENFORCE_LT(
      scope_id, scopes_->size(),
      platform::errors::InvalidArgument(
          "Input scope_id is greater than scopes size in RecurrentOp"));
120 121
  return *(*scopes_)[scope_id];
}
Y
Yu Yang 已提交
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
RecurrentBase::RecurrentBase(const std::string &type,
                             const framework::VariableNameMap &inputs,
                             const framework::VariableNameMap &outputs,
                             const framework::AttributeMap &attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

// Get SequenceLength from Scope
//   The sequence length is got from input tensor. The input tensor's
//   dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
//   is SEQ_LEN. The second of the tensor's shape could be the batch size or
//   nested sequence length.
int64_t RecurrentBase::GetSequenceLength(const framework::Scope &scope) const {
  // Dim format SEQ_LEN, BATCH_SIZE, ...
  int64_t seq_len = -1;
  auto &all_inputs = Inputs(kInputs);
138 139 140
  PADDLE_ENFORCE_EQ(
      all_inputs.empty(), false,
      platform::errors::InvalidArgument("RecurrentOp gets empty input"));
141 142
  for (auto &iname : all_inputs) {
    auto *var = scope.FindVar(iname);
143 144 145 146 147 148 149 150
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "RecurrentOp finds var %s is NULL", iname));
    PADDLE_ENFORCE_EQ(var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "RecurrentOp only accepts LoDTensor as input but "
                          "input var %s is not LoDTensor",
                          iname));
151 152 153 154
    auto &dim = var->Get<framework::LoDTensor>().dims();
    if (seq_len == -1) {
      seq_len = dim[0];
    } else {
155 156 157 158 159
      PADDLE_ENFORCE_EQ(seq_len, dim[0],
                        platform::errors::InvalidArgument(
                            "Sequence length of input %s in RecurrentOp is NOT "
                            "equal to sequence length of previous input",
                            iname));
Y
Yu Yang 已提交
160 161
    }
  }
162 163 164
  PADDLE_ENFORCE_GE(seq_len, 0,
                    platform::errors::InvalidArgument(
                        "RecurrentOp gets invalid sequence length."));
165 166
  return seq_len;
}
Y
Yu Yang 已提交
167

168 169 170 171 172 173 174 175 176 177 178 179 180
// for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
//                                   map(dst_scope.Var, dst_vars)):
//   dst_tensor.ShareDataWith(src_tensor)
void RecurrentBase::LinkTensor(const framework::Scope &src_scope,
                               const std::vector<std::string> &src_vars,
                               framework::Scope *dst_scope,
                               const std::vector<std::string> &dst_vars) {
  LinkTensorWithCallback(
      src_scope, src_vars, dst_scope, dst_vars,
      [&](const framework::Tensor &src, framework::Tensor *dst) {
        dst->ShareDataWith(src);
      });
}
Y
Yu Yang 已提交
181

182 183 184 185 186 187 188
// (seq_len, shape) -> return [seq_len] + list(shape)
framework::DDim RecurrentBase::PrependDims(size_t seq_len,
                                           const framework::DDim &src) {
  auto dims = framework::vectorize(src);
  dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
  return framework::make_ddim(dims);
}
Y
Yu Yang 已提交
189

190 191 192 193 194
RecurrentOp::RecurrentOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
    : RecurrentBase(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
195

196 197 198 199
void RecurrentOp::RunImpl(const framework::Scope &scope,
                          const platform::Place &place) const {
  bool has_state = Attr<bool>(kHasStates);
  auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));
Y
Yu Yang 已提交
200

201 202 203
  // get device context from pool
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &dev_ctx = *pool.Get(place);
Y
Yu Yang 已提交
204

205 206
  VLOG(3) << "Static RNN input sequence length = " << seq_len;
  auto reverse = Attr<bool>(kReverse);
Y
Yu Yang 已提交
207

208 209
  framework::Executor executor(place);
  auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yu Yang 已提交
210

211 212 213 214
  auto *program = block->Program();
  auto ctx = executor.Prepare(
      *program, block->ID(), Attr<std::vector<std::string>>(
                                 kSkipEagerDeletionVars) /*skip_ref_cnt_vars*/);
Y
Yu Yang 已提交
215

216 217 218 219 220 221 222
  static std::mutex mutex;
  std::lock_guard<std::mutex> lock(mutex);
  StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
  // TODO(gfwm2013) Function CreateStepScopes would make segmentation fault in
  // multithreading in eval process, so we use a mutex before function
  // CreateStepScopes to make sure that the computing process is correct. This
  // problem will fix in next pull request.
223 224 225
  for (size_t i = 0; i < seq_len; ++i) {
    size_t seq_offset = reverse ? seq_len - i - 1 : i;
    VLOG(3) << "Recurrent operate at the time step " << seq_offset;
Y
Yu Yang 已提交
226

227
    auto &cur_scope = scopes.CurScope();
Y
Yu Yang 已提交
228

229 230 231 232 233 234 235 236 237 238 239
    // Link outside::input --> inside::input
    //   inside::input = outside::input[seq_offset: seq_offset+1]
    LinkTensorWithCallback(
        scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
        [&seq_offset](const framework::Tensor &outside,
                      framework::Tensor *inside) {
          inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
          auto dims = framework::vectorize(inside->dims());
          dims.erase(dims.begin());
          inside->Resize(framework::make_ddim(dims));
        });
Y
Yu Yang 已提交
240

241 242 243 244 245 246 247 248 249 250 251
    if (has_state) {
      if (i == 0) {
        // Link initial states  --> ex_states
        LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
                   Attr<std::vector<std::string>>(kExStates));
      } else {
        auto &ex_scope = scopes.ExScope();
        // Link ex_scope::state --> cur_scope::ex_state
        LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
                   &cur_scope, Attr<std::vector<std::string>>(kExStates));
      }
Y
Yu Yang 已提交
252 253
    }

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    // Link inside::output -> outside::output
    //   outside::output[seq_offset: seq_offset + 1] = inside::output
    executor.CreateVariables(ctx->prog_, &cur_scope, ctx->block_id_);
    if (i > 0) {
      LinkTensorWithCallback(scope, Outputs(kOutputs), cur_scope,
                             Outputs(kOutputs),
                             [&](const framework::LoDTensor &src_tensor,
                                 framework::LoDTensor *dst_tensor) {
                               framework::Tensor src_slice =
                                   src_tensor.Slice(seq_offset, seq_offset + 1);
                               dst_tensor->ShareDataWith(src_slice);
                             });
    }

    // Linked now, execute!
269 270
    executor.RunPreparedContext(ctx.get(), &cur_scope,
                                false /*create_local_scope*/,
271 272 273 274 275 276 277
                                false /*create_vars*/, true /* keep_kids */);
    if (i == 0) {
      LinkTensorWithCallback(
          cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
          [&](const framework::LoDTensor &src_tensor,
              framework::LoDTensor *dst_tensor) {
            // create output tensor at begin
278 279 280
            dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
            dst_tensor->mutable_data(place, src_tensor.type());

281 282 283 284 285 286
            auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
            // Explicit copy output since the local RNN scope can be destroyed
            // early.
            framework::TensorCopy(src_tensor, place, dev_ctx, &dst_out);
          });
    }
287

288
    scopes.ForwardNext();
Y
Yu Yang 已提交
289
  }
290
}
Y
Yu Yang 已提交
291

292 293 294 295
StepScopes RecurrentOp::CreateStepScopes(const platform::DeviceContext &dev_ctx,
                                         const framework::Scope &scope,
                                         size_t seq_len) const {
  auto *var = scope.FindVar(Output(kStepScopes));
296 297
  PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                   "RecurrentOp gets empty StepScopes var"));
298 299 300
  return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
                    Attr<bool>(kIsTrain), seq_len);
}
Y
Yu Yang 已提交
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
RecurrentGradOp::RecurrentGradOp(const std::string &type,
                                 const framework::VariableNameMap &inputs,
                                 const framework::VariableNameMap &outputs,
                                 const framework::AttributeMap &attrs)
    : RecurrentBase(type, inputs, outputs, attrs) {}

void RecurrentGradOp::RunImpl(const framework::Scope &scope,
                              const platform::Place &place) const {
  bool has_state = Attr<bool>(kHasStates);
  const size_t seq_len = static_cast<size_t>(GetSequenceLength(scope));

  // get device context from pool
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &dev_ctx = *pool.Get(place);

  StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
  auto reverse = Attr<bool>(kReverse);

  framework::Executor executor(place);
  auto *block = Attr<framework::BlockDesc *>(kStepBlock);
  auto *program = block->Program();
  auto ctx = executor.Prepare(
      *program, block->ID(), Attr<std::vector<std::string>>(
                                 kSkipEagerDeletionVars) /*skip_ref_cnt_vars*/);

  for (size_t step_id = 0; step_id < seq_len; ++step_id) {
    size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
    VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
    auto &cur_scope = scopes.CurScope();

    // Link outside::output_grads --> inside::output_grads
    //   inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
    LinkTensorWithCallback(
        scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
        [&](const framework::Tensor &outside, framework::Tensor *inside) {
          inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
          auto dims = framework::vectorize(inside->dims());
          dims.erase(dims.begin());
          inside->Resize(framework::make_ddim(dims));
        },
        true /*is_backward*/);
    auto og_set = List2Set(Inputs(kOutputGrads));

    if (VLOG_IS_ON(10)) {
      std::ostringstream sout;
      std::copy(og_set.begin(), og_set.end(),
                std::ostream_iterator<std::string>(sout, ","));
      VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
    }

    if (has_state) {
      // Link states
      //   if cur_scope::cur_state_grad in out_grads:
      //     cur_scope::cur_state_grad += ex_scope::ex_state_grad
      //   else:
      //     ex_scope::ex_state_grad --> cur_scope::cur_state_grad
      if (step_id != 0) {  // not at beginning
        auto &ex_scope = scopes.ExScope();
        auto ex_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kExStates));
        auto cur_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kStates));

365 366 367 368
        PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size(),
                          platform::errors::InvalidArgument(
                              "lengths of ex_states and cur_states are not "
                              "equal in RecurrentGradOp"));
369 370 371
        for (size_t i = 0; i < ex_state_grads.size(); ++i) {
          auto &cur_grad = cur_state_grads[i];
          auto &ex_grad = ex_state_grads[i];
372
          auto &ex_grad_tensor =
373 374 375 376
              ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();

          VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
          auto *cur_grad_var = cur_scope.Var(cur_grad);
377
          framework::LoDTensor *cur_grad_tensor =
378
              cur_grad_var->GetMutable<framework::LoDTensor>();
379
          cur_grad_tensor->ShareDataWith(ex_grad_tensor);
Y
Yu Yang 已提交
380
        }
Y
Yan Chunwei 已提交
381
      }
382
    }
Y
Yu Yang 已提交
383

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    // Link inside::output -> outside::output
    //   outside::output[seq_offset: seq_offset + 1] = inside::output
    executor.CreateVariables(ctx->prog_, &cur_scope, ctx->block_id_);
    if (step_id > 0) {
      LinkTensorWithCallback(scope, Outputs(kInputGrads), cur_scope,
                             GradVarLists(Inputs(kInputs)),
                             [&](const framework::LoDTensor &src_tensor,
                                 framework::LoDTensor *dst_tensor) {
                               if (src_tensor.memory_size() ==
                                   0) {  // Inside Gradient is not created.
                                 return;
                               }
                               framework::Tensor src_slice =
                                   src_tensor.Slice(seq_offset, seq_offset + 1);
                               dst_tensor->ShareDataWith(src_slice);
                             },
                             true /*is_backward*/);
    }

403 404 405 406
    VLOG(5) << "Recurrent memory linking finished ";
    // Run step block with cur_scope
    executor.RunPreparedContext(ctx.get(), &cur_scope,
                                false /*create_local_scope*/,
407
                                false /*create_vars*/, true /* keep_kids */);
Y
Yu Yang 已提交
408

409
    VLOG(5) << "executor.Run finished ";
Y
Yu Yang 已提交
410

411
    auto local_var_names = LocalVarNames(cur_scope);
Y
Yu Yang 已提交
412

413 414 415 416 417 418 419
    // Accumulate params
    //   if (step == 0):
    //      outside::param_grad = 0.0
    //   outside::param_grad += inside::param_grad
    {
      auto &pg_names = Outputs(kParamGrads);
      auto &p_names = Inputs(kParameters);
420 421 422 423
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size(),
                        platform::errors::InvalidArgument(
                            "Sizes of Parameters and ParamGrads are not equal "
                            "in RecurrentGradOp"));
Y
Yu Yang 已提交
424

425 426
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yu Yang 已提交
427

428 429 430 431 432
        // If does not compute gradient of that variable inside rnn, just
        // continue
        if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
          continue;
        }
Y
Yu Yang 已提交
433

434 435 436 437 438 439
        // zero gradient variable in step 0
        if (step_id == 0) {
          auto &inside_tensor =
              cur_scope.FindVar(inside_grad_name)->Get<framework::LoDTensor>();
          framework::AttributeMap attrs;
          attrs["dtype"] = inside_tensor.type();
440
          attrs["shape"] = framework::vectorize<int>(inside_tensor.dims());
441 442 443 444 445 446 447
          attrs["value"] = 0.0f;

          auto zero_op = framework::OpRegistry::CreateOp(
              "fill_constant", framework::VariableNameMap{},
              {{"Out", {pg_names[param_id]}}}, attrs);
          zero_op->Run(scope, place);
        }
Y
Yu Yang 已提交
448

449
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yu Yang 已提交
450

451 452 453 454 455 456
        // sum gradient
        auto sum_op = framework::OpRegistry::CreateOp(
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
            {{"Out", {pg_names[param_id]}}},
            framework::AttributeMap{{"use_mkldnn", {false}}});
        sum_op->Run(cur_scope, place);
Y
Yu Yang 已提交
457

458
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yan Chunwei 已提交
459
      }
460 461 462 463 464
    }
    VLOG(5) << "Accumulate Parameter finished ";

    // Copy input gradient from inside to outside
    //   outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
465 466 467 468 469 470 471 472 473
    if (step_id == 0) {
      LinkTensorWithCallback(
          cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
          [&](const framework::LoDTensor &inside,
              framework::LoDTensor *outside) {
            if (inside.memory_size() == 0) {  // IG is not created.
              return;
            }
            // Alloc outside memory
474 475 476
            outside->Resize(PrependDims(seq_len, inside.dims()));
            outside->mutable_data(place, inside.type());

477 478 479 480 481
            auto dst = outside->Slice(seq_offset, seq_offset + 1);
            framework::TensorCopy(inside, place, dev_ctx, &dst);
          },
          true /*is_backward*/);
    }
482 483 484 485 486 487 488 489 490 491 492
    VLOG(5) << "Link outside gradient finished ";

    if (has_state) {
      if (step_id + 1 == seq_len) {  // at_end
        // copy initialize states gradient from inside to outside
        LinkTensorWithCallback(
            cur_scope, GradVarLists(Attr<std::vector<std::string>>(kExStates)),
            scope, Outputs(kInitStateGrads),
            [&](const framework::LoDTensor &inside,
                framework::LoDTensor *outside) {
              outside->Resize(inside.dims());
D
dzhwinter 已提交
493
              outside->mutable_data(place, inside.type());
494 495 496 497
              framework::TensorCopy(inside, place, dev_ctx, outside);
            },
            true /*is_backward*/);
        VLOG(5) << "Link initialize state gradient finished ";
Y
Yu Yang 已提交
498
      }
Y
Yan Chunwei 已提交
499
    }
500
    scopes.BackwardNext(dev_ctx, const_cast<framework::Scope *>(&scope));
Y
Yan Chunwei 已提交
501
  }
502 503
  // Delete the scope of StepScopes
  auto *var = scope.FindVar(Input(kStepScopes));
504 505 506
  PADDLE_ENFORCE_NOT_NULL(var,
                          platform::errors::InvalidArgument(
                              "StepScopes var is empty in RecurrentGradOp"));
507 508 509
  auto *step_scopes = var->GetMutable<StepScopeVar>();
  ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&scope), step_scopes);
}
Y
Yu Yang 已提交
510

511 512 513 514
StepScopes RecurrentGradOp::CreateStepScopes(
    const platform::DeviceContext &dev_ctx, const framework::Scope &scope,
    size_t seq_len) const {
  auto *var = scope.FindVar(Input(kStepScopes));
515 516 517
  PADDLE_ENFORCE_NOT_NULL(var,
                          platform::errors::InvalidArgument(
                              "StepScopes var is empty in RecurrentGradOp"));
518 519 520
  return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
                    Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
}
Y
Yu Yang 已提交
521

522 523 524 525 526 527
std::unordered_set<std::string> RecurrentGradOp::List2Set(
    const std::vector<std::string> &list) const {
  std::unordered_set<std::string> local_var_name_set;
  local_var_name_set.reserve(list.size());
  for (auto &each : list) {
    local_var_name_set.insert(each);
Y
Yu Yang 已提交
528
  }
529 530
  return local_var_name_set;
}
Y
Yu Yang 已提交
531

532 533 534 535
std::unordered_set<std::string> RecurrentGradOp::LocalVarNames(
    const framework::Scope &scope) const {
  return this->List2Set(scope.LocalVarNames());
}
536

537 538 539 540 541 542 543 544
std::vector<std::string> RecurrentGradOp::GradVarLists(
    const std::vector<std::string> &var_names) {
  std::vector<std::string> retv;
  retv.reserve(var_names.size());
  std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
                 framework::GradVarName);
  return retv;
}
Y
Yu Yang 已提交
545 546

class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
547
 public:
Y
Yu Yang 已提交
548
  void Make() override {
549 550 551 552
    AddInput(RecurrentBase::kInputs, "rnn inputs").AsDuplicable();
    AddInput(RecurrentBase::kInitialStates, "rnn initial states")
        .AsDuplicable();
    AddInput(RecurrentBase::kParameters,
Y
Yu Yang 已提交
553
             "Parameters are used by step block as its input. However, the "
K
kexinzhao 已提交
554 555
             "input is not a sequence tensor. Every time step, each operator "
             "in step block just use the parameter directly.")
Y
Yu Yang 已提交
556
        .AsDuplicable();
557
    AddOutput(RecurrentBase::kOutputs,
K
kexinzhao 已提交
558
              "The output sequence of RNN. The sequence length must be same.")
Y
Yu Yang 已提交
559
        .AsDuplicable();
560
    AddOutput(RecurrentBase::kStepScopes,
K
kexinzhao 已提交
561
              "StepScopes contain all local variables in each time step.");
562 563 564 565 566 567
    AddAttr<bool>(RecurrentBase::kHasStates, "Whether has states.")
        .SetDefault(false);
    AddAttr<std::vector<std::string>>(
        RecurrentBase::kExStates,
        string::Sprintf(
            R"DOC(The ex-state variable names.
Y
Yu Yang 已提交
568 569
The ex-state means the state value in the ex-timestep or the previous time step
[%s, %s, %s] must be the same order)DOC",
570 571
            RecurrentBase::kExStates, RecurrentBase::kStates,
            RecurrentBase::kInitStateGrads));
Y
Yu Yang 已提交
572
    AddAttr<std::vector<std::string>>(
573
        RecurrentBase::kStates,
Y
Yu Yang 已提交
574 575
        string::Sprintf(
            "The state variable names. [%s, %s, %s] must be the same order",
576 577 578 579 580
            RecurrentBase::kExStates, RecurrentBase::kStates,
            RecurrentBase::kInitStateGrads));
    AddAttr<framework::BlockDesc *>(RecurrentBase::kStepBlock,
                                    "The step block inside RNN");
    AddAttr<bool>(RecurrentBase::kReverse, R"DOC(Calculate RNN reversely or not.
Y
Yu Yang 已提交
581
By default reverse=False
Y
Yan Chunwei 已提交
582

Y
Yu Yang 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
Assume the input data is [A, B, C, D]

if reverse is False:
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn -----> rnn -----> rnn ----> rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o

if reverse is True
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn <----- rnn <----- rnn <---- rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o
)DOC").SetDefault(false);
605 606 607 608 609 610
    AddAttr<bool>(RecurrentBase::kIsTrain, "").SetDefault(true);
    AddAttr<std::vector<std::string>>(RecurrentBase::kSkipEagerDeletionVars,
                                      "Vars that would skip eager deletion."
                                      "Users should not set this manually.")
        .SetDefault(std::vector<std::string>());

K
kexinzhao 已提交
611 612 613 614 615
    AddComment(R"DOC(
Static Length Recurrent Operator.

The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
Y
Yu Yang 已提交
616 617 618 619 620

)DOC");
  }
};

H
hong 已提交
621 622
template <typename T>
class RecurrentGradOpMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
623
 public:
H
hong 已提交
624
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yan Chunwei 已提交
625

Y
Yu Yang 已提交
626
 protected:
627
  void Apply(GradOpPtr<T> grad) const override {
Y
Yu Yang 已提交
628 629 630 631
    grad->SetType("recurrent_grad");
    for (auto &input_param : this->InputNames()) {
      grad->SetInput(input_param, this->Input(input_param));
      grad->SetOutput(framework::GradVarName(input_param),
632
                      this->InputGrad(input_param, false));
Y
Yu Yang 已提交
633 634 635
    }

    for (auto &output_param : this->OutputNames()) {
636
      if (output_param == RecurrentBase::kStepScopes) {
Y
Yu Yang 已提交
637 638 639 640 641 642 643 644 645 646
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->Output(output_param));
      } else {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->OutputGrad(output_param));
      }
    }
    grad->SetAttrMap(this->Attrs());
H
hong 已提交
647
    grad->SetBlockAttr(RecurrentBase::kStepBlock, this->grad_block_[0]);
Y
Yan Chunwei 已提交
648 649 650
  }
};

Y
Yu Yang 已提交
651 652 653
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
654
    std::vector<std::string> output{RecurrentBase::kOutputs};
C
chengduo 已提交
655 656 657

    // In some case the kInitialStates is empty.
    // If the kInitialStates is empty, all the states should be empty.
658
    if (!ctx->HasInputs(RecurrentBase::kInitialStates)) {
C
chengduo 已提交
659
      PADDLE_ENFORCE_EQ(
660 661 662
          ctx->Attrs()
              .Get<std::vector<std::string>>(RecurrentBase::kExStates)
              .size(),
663 664
          0, platform::errors::InvalidArgument("The Attr(%s) should be empty.",
                                               RecurrentBase::kExStates));
C
chengduo 已提交
665
      PADDLE_ENFORCE_EQ(
666 667 668
          ctx->Attrs()
              .Get<std::vector<std::string>>(RecurrentBase::kStates)
              .size(),
669 670
          0, platform::errors::InvalidArgument("The Attr(%s) should be empty.",
                                               RecurrentBase::kStates));
Y
Yu Yang 已提交
671
    }
C
chengduo 已提交
672

673 674 675 676 677 678 679 680
    PADDLE_ENFORCE_EQ(
        ctx->HasInputs(RecurrentBase::kInputs), true,
        platform::errors::InvalidArgument("The input(%s) should not be empty.",
                                          RecurrentBase::kInputs));
    PADDLE_ENFORCE_EQ(
        ctx->HasInputs(RecurrentBase::kOutputs), true,
        platform::errors::InvalidArgument("The input(%s) should not be empty.",
                                          RecurrentBase::kOutputs));
C
chengduo 已提交
681 682

    // In some case the kInitialStates is empty.
683 684 685
    if (ctx->HasInputs(RecurrentBase::kInitialStates) &&
        ctx->HasOutputs(
            framework::GradVarName(RecurrentBase::kInitialStates))) {
686 687
      ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kInitialStates),
                         ctx->GetInputsDim(RecurrentBase::kInitialStates));
Y
Yan Chunwei 已提交
688
    }
C
chengduo 已提交
689

690 691
    PADDLE_ENFORCE_EQ(
        ctx->HasOutputs(framework::GradVarName(RecurrentBase::kInputs)), true,
692 693 694
        platform::errors::InvalidArgument(
            "The output of(%s) should not be empty.",
            framework::GradVarName(RecurrentBase::kInputs)));
695 696
    ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kInputs),
                       ctx->GetInputsDim(RecurrentBase::kInputs));
C
chengduo 已提交
697 698

    // In some case the kParameters is empty.
699
    if (ctx->HasInputs(RecurrentBase::kParameters)) {
700
      PADDLE_ENFORCE_EQ(
701
          ctx->HasOutputs(framework::GradVarName(RecurrentBase::kParameters)),
702 703 704
          true, platform::errors::InvalidArgument(
                    "The output of(%s) should not be empty.",
                    framework::GradVarName(RecurrentBase::kParameters)));
705 706
      ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kParameters),
                         ctx->GetInputsDim(RecurrentBase::kParameters));
Y
Yu Yang 已提交
707 708 709
    }
  }
};
Y
Yan Chunwei 已提交
710 711 712 713

}  // namespace operators
}  // namespace paddle

H
hong 已提交
714 715 716 717
REGISTER_OPERATOR(
    recurrent, paddle::operators::RecurrentOp,
    paddle::operators::RecurrentOpProtoMaker,
    paddle::operators::RecurrentGradOpMaker<paddle::framework::OpDesc>);
Y
Yu Yang 已提交
718 719
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
                  paddle::operators::RecurrentGradOpShapeInference);