recurrent_op.cc 28.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15 16 17 18
#include "paddle/fluid/operators/recurrent_op.h"

#include <algorithm>
#include "paddle/fluid/string/string_helper.h"
Y
Yan Chunwei 已提交
19 20 21 22

namespace paddle {
namespace operators {

Y
Yu Yang 已提交
23 24
using StepScopeVar = std::vector<framework::Scope *>;

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
const char RecurrentBase::kInputs[] = "inputs";
const char RecurrentBase::kInitialStates[] = "initial_states";
const char RecurrentBase::kParameters[] = "parameters";
const char RecurrentBase::kOutputs[] = "outputs";
const char RecurrentBase::kStepScopes[] = "step_scopes";
const char RecurrentBase::kHasStates[] = "has_states";
const char RecurrentBase::kExStates[] = "ex_states";
const char RecurrentBase::kStates[] = "states";
const char RecurrentBase::kStepBlock[] = "sub_block";
const char RecurrentBase::kReverse[] = "reverse";
const char RecurrentBase::kIsTrain[] = "is_train";
const char RecurrentBase::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";
#define GRAD_SUFFIX "@GRAD"
const char RecurrentBase::kInputGrads[] = "inputs" GRAD_SUFFIX;
const char RecurrentBase::kOutputGrads[] = "outputs" GRAD_SUFFIX;
const char RecurrentBase::kParamGrads[] = "parameters" GRAD_SUFFIX;
const char RecurrentBase::kInitStateGrads[] = "initial_states" GRAD_SUFFIX;

43 44 45 46 47 48 49 50
static void ClearStepScopes(const platform::DeviceContext &dev_ctx,
                            framework::Scope *parent_scope,
                            StepScopeVar *step_scopes) {
  if (step_scopes->empty()) return;

  dev_ctx.Wait();

  for (auto *sub_scope : *step_scopes) {
51 52 53
    if (parent_scope->HasKid(sub_scope)) {
      parent_scope->DeleteScope(sub_scope);
    }
54 55 56 57 58
  }

  step_scopes->clear();
}

59 60 61 62 63 64 65 66
StepScopes::StepScopes(const platform::DeviceContext &dev_ctx,
                       const framework::Scope &parent, StepScopeVar *scopes,
                       bool is_train, size_t seq_len, bool is_backward)
    : counter_(is_backward ? seq_len - 1 : 0UL),
      scopes_(scopes),
      is_train_(is_train),
      is_backward_(is_backward) {
  size_t num_step_scopes = is_train ? seq_len : 2;
67
  PADDLE_ENFORCE_EQ(is_train || !is_backward, true,
68 69
                    platform::errors::PreconditionNotMet(
                        "Cannot backward when is not training"));
70 71 72 73 74
  if (!is_backward_) {
    ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&parent), scopes);
    scopes->reserve(static_cast<size_t>(num_step_scopes));
    for (size_t i = 0; i < num_step_scopes; ++i) {
      scopes->emplace_back(&parent.NewScope());
Y
Yan Chunwei 已提交
75
    }
Y
Yu Yang 已提交
76
  }
77 78 79
}

framework::Scope &StepScopes::CurScope() { return GetScope(counter_); }
Y
Yu Yang 已提交
80

81 82 83 84
framework::Scope &StepScopes::ExScope() {
  auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
  return scope;
}
Y
Yu Yang 已提交
85

86 87 88
void StepScopes::BackwardNext(const platform::DeviceContext &dev_ctx,
                              framework::Scope *parent_scope) {
  PADDLE_ENFORCE_EQ(is_backward_, true,
89 90
                    platform::errors::PreconditionNotMet(
                        "Cannot get backward next scope when is forward"));
91 92 93 94
  if (counter_ + 2 == scopes_->size()) {
    parent_scope->DeleteScope((*scopes_)[counter_ + 1]);
    scopes_->pop_back();
    VLOG(3) << "Deleted scope at " << counter_ + 1;
Y
Yu Yang 已提交
95
  }
96 97 98 99 100
  --counter_;
}

void StepScopes::ForwardNext() {
  PADDLE_ENFORCE_EQ(is_backward_, false,
101 102
                    platform::errors::PreconditionNotMet(
                        "Cannot get forward next scope when is backward"));
103
  ++counter_;
104
}
Y
Yu Yang 已提交
105

106 107 108
framework::Scope &StepScopes::GetScope(size_t scope_id) const {
  if (!is_train_) {
    scope_id %= 2;
Y
Yu Yang 已提交
109
  }
110 111 112 113
  PADDLE_ENFORCE_LT(
      scope_id, scopes_->size(),
      platform::errors::InvalidArgument(
          "Input scope_id is greater than scopes size in RecurrentOp"));
114 115
  return *(*scopes_)[scope_id];
}
Y
Yu Yang 已提交
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
RecurrentBase::RecurrentBase(const std::string &type,
                             const framework::VariableNameMap &inputs,
                             const framework::VariableNameMap &outputs,
                             const framework::AttributeMap &attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

// Get SequenceLength from Scope
//   The sequence length is got from input tensor. The input tensor's
//   dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
//   is SEQ_LEN. The second of the tensor's shape could be the batch size or
//   nested sequence length.
int64_t RecurrentBase::GetSequenceLength(const framework::Scope &scope) const {
  // Dim format SEQ_LEN, BATCH_SIZE, ...
  int64_t seq_len = -1;
  auto &all_inputs = Inputs(kInputs);
132 133 134
  PADDLE_ENFORCE_EQ(
      all_inputs.empty(), false,
      platform::errors::InvalidArgument("RecurrentOp gets empty input"));
135 136
  for (auto &iname : all_inputs) {
    auto *var = scope.FindVar(iname);
137 138 139 140 141 142 143 144
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "RecurrentOp finds var %s is NULL", iname));
    PADDLE_ENFORCE_EQ(var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "RecurrentOp only accepts LoDTensor as input but "
                          "input var %s is not LoDTensor",
                          iname));
145 146 147 148
    auto &dim = var->Get<framework::LoDTensor>().dims();
    if (seq_len == -1) {
      seq_len = dim[0];
    } else {
149 150 151 152 153
      PADDLE_ENFORCE_EQ(seq_len, dim[0],
                        platform::errors::InvalidArgument(
                            "Sequence length of input %s in RecurrentOp is NOT "
                            "equal to sequence length of previous input",
                            iname));
Y
Yu Yang 已提交
154 155
    }
  }
156 157 158
  PADDLE_ENFORCE_GE(seq_len, 0,
                    platform::errors::InvalidArgument(
                        "RecurrentOp gets invalid sequence length."));
159 160
  return seq_len;
}
Y
Yu Yang 已提交
161

162 163 164 165 166 167 168 169 170 171 172 173 174
// for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
//                                   map(dst_scope.Var, dst_vars)):
//   dst_tensor.ShareDataWith(src_tensor)
void RecurrentBase::LinkTensor(const framework::Scope &src_scope,
                               const std::vector<std::string> &src_vars,
                               framework::Scope *dst_scope,
                               const std::vector<std::string> &dst_vars) {
  LinkTensorWithCallback(
      src_scope, src_vars, dst_scope, dst_vars,
      [&](const framework::Tensor &src, framework::Tensor *dst) {
        dst->ShareDataWith(src);
      });
}
Y
Yu Yang 已提交
175

176 177 178 179 180 181 182
// (seq_len, shape) -> return [seq_len] + list(shape)
framework::DDim RecurrentBase::PrependDims(size_t seq_len,
                                           const framework::DDim &src) {
  auto dims = framework::vectorize(src);
  dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
  return framework::make_ddim(dims);
}
Y
Yu Yang 已提交
183

184 185 186 187 188
RecurrentOp::RecurrentOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
    : RecurrentBase(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
189

190 191 192 193
void RecurrentOp::RunImpl(const framework::Scope &scope,
                          const platform::Place &place) const {
  bool has_state = Attr<bool>(kHasStates);
  auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));
Y
Yu Yang 已提交
194

195 196 197
  // get device context from pool
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &dev_ctx = *pool.Get(place);
Y
Yu Yang 已提交
198

199 200 201
  VLOG(3) << "Static RNN input sequence length = " << seq_len;
  StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
  auto reverse = Attr<bool>(kReverse);
Y
Yu Yang 已提交
202

203 204
  framework::Executor executor(place);
  auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yu Yang 已提交
205

206 207 208 209
  auto *program = block->Program();
  auto ctx = executor.Prepare(
      *program, block->ID(), Attr<std::vector<std::string>>(
                                 kSkipEagerDeletionVars) /*skip_ref_cnt_vars*/);
Y
Yu Yang 已提交
210

211 212 213
  for (size_t i = 0; i < seq_len; ++i) {
    size_t seq_offset = reverse ? seq_len - i - 1 : i;
    VLOG(3) << "Recurrent operate at the time step " << seq_offset;
Y
Yu Yang 已提交
214

215
    auto &cur_scope = scopes.CurScope();
Y
Yu Yang 已提交
216

217 218 219 220 221 222 223 224 225 226 227
    // Link outside::input --> inside::input
    //   inside::input = outside::input[seq_offset: seq_offset+1]
    LinkTensorWithCallback(
        scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
        [&seq_offset](const framework::Tensor &outside,
                      framework::Tensor *inside) {
          inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
          auto dims = framework::vectorize(inside->dims());
          dims.erase(dims.begin());
          inside->Resize(framework::make_ddim(dims));
        });
Y
Yu Yang 已提交
228

229 230 231 232 233 234 235 236 237 238 239
    if (has_state) {
      if (i == 0) {
        // Link initial states  --> ex_states
        LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
                   Attr<std::vector<std::string>>(kExStates));
      } else {
        auto &ex_scope = scopes.ExScope();
        // Link ex_scope::state --> cur_scope::ex_state
        LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
                   &cur_scope, Attr<std::vector<std::string>>(kExStates));
      }
Y
Yu Yang 已提交
240 241
    }

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    // Link inside::output -> outside::output
    //   outside::output[seq_offset: seq_offset + 1] = inside::output
    executor.CreateVariables(ctx->prog_, &cur_scope, ctx->block_id_);
    if (i > 0) {
      LinkTensorWithCallback(scope, Outputs(kOutputs), cur_scope,
                             Outputs(kOutputs),
                             [&](const framework::LoDTensor &src_tensor,
                                 framework::LoDTensor *dst_tensor) {
                               framework::Tensor src_slice =
                                   src_tensor.Slice(seq_offset, seq_offset + 1);
                               dst_tensor->ShareDataWith(src_slice);
                             });
    }

    // Linked now, execute!
257 258
    executor.RunPreparedContext(ctx.get(), &cur_scope,
                                false /*create_local_scope*/,
259 260 261 262 263 264 265
                                false /*create_vars*/, true /* keep_kids */);
    if (i == 0) {
      LinkTensorWithCallback(
          cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
          [&](const framework::LoDTensor &src_tensor,
              framework::LoDTensor *dst_tensor) {
            // create output tensor at begin
266 267 268
            dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
            dst_tensor->mutable_data(place, src_tensor.type());

269 270 271 272 273 274
            auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
            // Explicit copy output since the local RNN scope can be destroyed
            // early.
            framework::TensorCopy(src_tensor, place, dev_ctx, &dst_out);
          });
    }
275

276
    scopes.ForwardNext();
Y
Yu Yang 已提交
277
  }
278
}
Y
Yu Yang 已提交
279

280 281 282 283
StepScopes RecurrentOp::CreateStepScopes(const platform::DeviceContext &dev_ctx,
                                         const framework::Scope &scope,
                                         size_t seq_len) const {
  auto *var = scope.FindVar(Output(kStepScopes));
284 285
  PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                   "RecurrentOp gets empty StepScopes var"));
286 287 288
  return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
                    Attr<bool>(kIsTrain), seq_len);
}
Y
Yu Yang 已提交
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
RecurrentGradOp::RecurrentGradOp(const std::string &type,
                                 const framework::VariableNameMap &inputs,
                                 const framework::VariableNameMap &outputs,
                                 const framework::AttributeMap &attrs)
    : RecurrentBase(type, inputs, outputs, attrs) {}

void RecurrentGradOp::RunImpl(const framework::Scope &scope,
                              const platform::Place &place) const {
  bool has_state = Attr<bool>(kHasStates);
  const size_t seq_len = static_cast<size_t>(GetSequenceLength(scope));

  // get device context from pool
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &dev_ctx = *pool.Get(place);

  StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
  auto reverse = Attr<bool>(kReverse);

  framework::Executor executor(place);
  auto *block = Attr<framework::BlockDesc *>(kStepBlock);
  auto *program = block->Program();
  auto ctx = executor.Prepare(
      *program, block->ID(), Attr<std::vector<std::string>>(
                                 kSkipEagerDeletionVars) /*skip_ref_cnt_vars*/);

  for (size_t step_id = 0; step_id < seq_len; ++step_id) {
    size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
    VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
    auto &cur_scope = scopes.CurScope();

    // Link outside::output_grads --> inside::output_grads
    //   inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
    LinkTensorWithCallback(
        scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
        [&](const framework::Tensor &outside, framework::Tensor *inside) {
          inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
          auto dims = framework::vectorize(inside->dims());
          dims.erase(dims.begin());
          inside->Resize(framework::make_ddim(dims));
        },
        true /*is_backward*/);
    auto og_set = List2Set(Inputs(kOutputGrads));

    if (VLOG_IS_ON(10)) {
      std::ostringstream sout;
      std::copy(og_set.begin(), og_set.end(),
                std::ostream_iterator<std::string>(sout, ","));
      VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
    }

    if (has_state) {
      // Link states
      //   if cur_scope::cur_state_grad in out_grads:
      //     cur_scope::cur_state_grad += ex_scope::ex_state_grad
      //   else:
      //     ex_scope::ex_state_grad --> cur_scope::cur_state_grad
      if (step_id != 0) {  // not at beginning
        auto &ex_scope = scopes.ExScope();
        auto ex_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kExStates));
        auto cur_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kStates));

353 354 355 356
        PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size(),
                          platform::errors::InvalidArgument(
                              "lengths of ex_states and cur_states are not "
                              "equal in RecurrentGradOp"));
357 358 359
        for (size_t i = 0; i < ex_state_grads.size(); ++i) {
          auto &cur_grad = cur_state_grads[i];
          auto &ex_grad = ex_state_grads[i];
360
          auto &ex_grad_tensor =
361 362 363 364
              ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();

          VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
          auto *cur_grad_var = cur_scope.Var(cur_grad);
365
          framework::LoDTensor *cur_grad_tensor =
366
              cur_grad_var->GetMutable<framework::LoDTensor>();
367
          cur_grad_tensor->ShareDataWith(ex_grad_tensor);
Y
Yu Yang 已提交
368
        }
Y
Yan Chunwei 已提交
369
      }
370
    }
Y
Yu Yang 已提交
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    // Link inside::output -> outside::output
    //   outside::output[seq_offset: seq_offset + 1] = inside::output
    executor.CreateVariables(ctx->prog_, &cur_scope, ctx->block_id_);
    if (step_id > 0) {
      LinkTensorWithCallback(scope, Outputs(kInputGrads), cur_scope,
                             GradVarLists(Inputs(kInputs)),
                             [&](const framework::LoDTensor &src_tensor,
                                 framework::LoDTensor *dst_tensor) {
                               if (src_tensor.memory_size() ==
                                   0) {  // Inside Gradient is not created.
                                 return;
                               }
                               framework::Tensor src_slice =
                                   src_tensor.Slice(seq_offset, seq_offset + 1);
                               dst_tensor->ShareDataWith(src_slice);
                             },
                             true /*is_backward*/);
    }

391 392 393 394
    VLOG(5) << "Recurrent memory linking finished ";
    // Run step block with cur_scope
    executor.RunPreparedContext(ctx.get(), &cur_scope,
                                false /*create_local_scope*/,
395
                                false /*create_vars*/, true /* keep_kids */);
Y
Yu Yang 已提交
396

397
    VLOG(5) << "executor.Run finished ";
Y
Yu Yang 已提交
398

399
    auto local_var_names = LocalVarNames(cur_scope);
Y
Yu Yang 已提交
400

401 402 403 404 405 406 407
    // Accumulate params
    //   if (step == 0):
    //      outside::param_grad = 0.0
    //   outside::param_grad += inside::param_grad
    {
      auto &pg_names = Outputs(kParamGrads);
      auto &p_names = Inputs(kParameters);
408 409 410 411
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size(),
                        platform::errors::InvalidArgument(
                            "Sizes of Parameters and ParamGrads are not equal "
                            "in RecurrentGradOp"));
Y
Yu Yang 已提交
412

413 414
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yu Yang 已提交
415

416 417 418 419 420
        // If does not compute gradient of that variable inside rnn, just
        // continue
        if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
          continue;
        }
Y
Yu Yang 已提交
421

422 423 424 425 426 427
        // zero gradient variable in step 0
        if (step_id == 0) {
          auto &inside_tensor =
              cur_scope.FindVar(inside_grad_name)->Get<framework::LoDTensor>();
          framework::AttributeMap attrs;
          attrs["dtype"] = inside_tensor.type();
428
          attrs["shape"] = framework::vectorize<int>(inside_tensor.dims());
429 430 431 432 433 434 435
          attrs["value"] = 0.0f;

          auto zero_op = framework::OpRegistry::CreateOp(
              "fill_constant", framework::VariableNameMap{},
              {{"Out", {pg_names[param_id]}}}, attrs);
          zero_op->Run(scope, place);
        }
Y
Yu Yang 已提交
436

437
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yu Yang 已提交
438

439 440 441 442 443 444
        // sum gradient
        auto sum_op = framework::OpRegistry::CreateOp(
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
            {{"Out", {pg_names[param_id]}}},
            framework::AttributeMap{{"use_mkldnn", {false}}});
        sum_op->Run(cur_scope, place);
Y
Yu Yang 已提交
445

446
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yan Chunwei 已提交
447
      }
448 449 450 451 452
    }
    VLOG(5) << "Accumulate Parameter finished ";

    // Copy input gradient from inside to outside
    //   outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
453 454 455 456 457 458 459 460 461
    if (step_id == 0) {
      LinkTensorWithCallback(
          cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
          [&](const framework::LoDTensor &inside,
              framework::LoDTensor *outside) {
            if (inside.memory_size() == 0) {  // IG is not created.
              return;
            }
            // Alloc outside memory
462 463 464
            outside->Resize(PrependDims(seq_len, inside.dims()));
            outside->mutable_data(place, inside.type());

465 466 467 468 469
            auto dst = outside->Slice(seq_offset, seq_offset + 1);
            framework::TensorCopy(inside, place, dev_ctx, &dst);
          },
          true /*is_backward*/);
    }
470 471 472 473 474 475 476 477 478 479 480
    VLOG(5) << "Link outside gradient finished ";

    if (has_state) {
      if (step_id + 1 == seq_len) {  // at_end
        // copy initialize states gradient from inside to outside
        LinkTensorWithCallback(
            cur_scope, GradVarLists(Attr<std::vector<std::string>>(kExStates)),
            scope, Outputs(kInitStateGrads),
            [&](const framework::LoDTensor &inside,
                framework::LoDTensor *outside) {
              outside->Resize(inside.dims());
D
dzhwinter 已提交
481
              outside->mutable_data(place, inside.type());
482 483 484 485
              framework::TensorCopy(inside, place, dev_ctx, outside);
            },
            true /*is_backward*/);
        VLOG(5) << "Link initialize state gradient finished ";
Y
Yu Yang 已提交
486
      }
Y
Yan Chunwei 已提交
487
    }
488
    scopes.BackwardNext(dev_ctx, const_cast<framework::Scope *>(&scope));
Y
Yan Chunwei 已提交
489
  }
490 491
  // Delete the scope of StepScopes
  auto *var = scope.FindVar(Input(kStepScopes));
492 493 494
  PADDLE_ENFORCE_NOT_NULL(var,
                          platform::errors::InvalidArgument(
                              "StepScopes var is empty in RecurrentGradOp"));
495 496 497
  auto *step_scopes = var->GetMutable<StepScopeVar>();
  ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&scope), step_scopes);
}
Y
Yu Yang 已提交
498

499 500 501 502
StepScopes RecurrentGradOp::CreateStepScopes(
    const platform::DeviceContext &dev_ctx, const framework::Scope &scope,
    size_t seq_len) const {
  auto *var = scope.FindVar(Input(kStepScopes));
503 504 505
  PADDLE_ENFORCE_NOT_NULL(var,
                          platform::errors::InvalidArgument(
                              "StepScopes var is empty in RecurrentGradOp"));
506 507 508
  return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
                    Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
}
Y
Yu Yang 已提交
509

510 511 512 513 514 515
std::unordered_set<std::string> RecurrentGradOp::List2Set(
    const std::vector<std::string> &list) const {
  std::unordered_set<std::string> local_var_name_set;
  local_var_name_set.reserve(list.size());
  for (auto &each : list) {
    local_var_name_set.insert(each);
Y
Yu Yang 已提交
516
  }
517 518
  return local_var_name_set;
}
Y
Yu Yang 已提交
519

520 521 522 523
std::unordered_set<std::string> RecurrentGradOp::LocalVarNames(
    const framework::Scope &scope) const {
  return this->List2Set(scope.LocalVarNames());
}
524

525 526 527 528 529 530 531 532
std::vector<std::string> RecurrentGradOp::GradVarLists(
    const std::vector<std::string> &var_names) {
  std::vector<std::string> retv;
  retv.reserve(var_names.size());
  std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
                 framework::GradVarName);
  return retv;
}
Y
Yu Yang 已提交
533 534

class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
535
 public:
Y
Yu Yang 已提交
536
  void Make() override {
537 538 539 540
    AddInput(RecurrentBase::kInputs, "rnn inputs").AsDuplicable();
    AddInput(RecurrentBase::kInitialStates, "rnn initial states")
        .AsDuplicable();
    AddInput(RecurrentBase::kParameters,
Y
Yu Yang 已提交
541
             "Parameters are used by step block as its input. However, the "
K
kexinzhao 已提交
542 543
             "input is not a sequence tensor. Every time step, each operator "
             "in step block just use the parameter directly.")
Y
Yu Yang 已提交
544
        .AsDuplicable();
545
    AddOutput(RecurrentBase::kOutputs,
K
kexinzhao 已提交
546
              "The output sequence of RNN. The sequence length must be same.")
Y
Yu Yang 已提交
547
        .AsDuplicable();
548
    AddOutput(RecurrentBase::kStepScopes,
K
kexinzhao 已提交
549
              "StepScopes contain all local variables in each time step.");
550 551 552 553 554 555
    AddAttr<bool>(RecurrentBase::kHasStates, "Whether has states.")
        .SetDefault(false);
    AddAttr<std::vector<std::string>>(
        RecurrentBase::kExStates,
        string::Sprintf(
            R"DOC(The ex-state variable names.
Y
Yu Yang 已提交
556 557
The ex-state means the state value in the ex-timestep or the previous time step
[%s, %s, %s] must be the same order)DOC",
558 559
            RecurrentBase::kExStates, RecurrentBase::kStates,
            RecurrentBase::kInitStateGrads));
Y
Yu Yang 已提交
560
    AddAttr<std::vector<std::string>>(
561
        RecurrentBase::kStates,
Y
Yu Yang 已提交
562 563
        string::Sprintf(
            "The state variable names. [%s, %s, %s] must be the same order",
564 565 566 567 568
            RecurrentBase::kExStates, RecurrentBase::kStates,
            RecurrentBase::kInitStateGrads));
    AddAttr<framework::BlockDesc *>(RecurrentBase::kStepBlock,
                                    "The step block inside RNN");
    AddAttr<bool>(RecurrentBase::kReverse, R"DOC(Calculate RNN reversely or not.
Y
Yu Yang 已提交
569
By default reverse=False
Y
Yan Chunwei 已提交
570

Y
Yu Yang 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
Assume the input data is [A, B, C, D]

if reverse is False:
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn -----> rnn -----> rnn ----> rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o

if reverse is True
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn <----- rnn <----- rnn <---- rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o
)DOC").SetDefault(false);
593 594 595 596 597 598
    AddAttr<bool>(RecurrentBase::kIsTrain, "").SetDefault(true);
    AddAttr<std::vector<std::string>>(RecurrentBase::kSkipEagerDeletionVars,
                                      "Vars that would skip eager deletion."
                                      "Users should not set this manually.")
        .SetDefault(std::vector<std::string>());

K
kexinzhao 已提交
599 600 601 602 603
    AddComment(R"DOC(
Static Length Recurrent Operator.

The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
Y
Yu Yang 已提交
604 605 606 607 608

)DOC");
  }
};

H
hong 已提交
609 610
template <typename T>
class RecurrentGradOpMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
611
 public:
H
hong 已提交
612
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yan Chunwei 已提交
613

Y
Yu Yang 已提交
614
 protected:
H
hong 已提交
615 616
  virtual std::unique_ptr<T> Apply() const {
    auto *grad = new T();
Y
Yu Yang 已提交
617 618 619 620
    grad->SetType("recurrent_grad");
    for (auto &input_param : this->InputNames()) {
      grad->SetInput(input_param, this->Input(input_param));
      grad->SetOutput(framework::GradVarName(input_param),
621
                      this->InputGrad(input_param, false));
Y
Yu Yang 已提交
622 623 624
    }

    for (auto &output_param : this->OutputNames()) {
625
      if (output_param == RecurrentBase::kStepScopes) {
Y
Yu Yang 已提交
626 627 628 629 630 631 632 633 634 635
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->Output(output_param));
      } else {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->OutputGrad(output_param));
      }
    }
    grad->SetAttrMap(this->Attrs());
H
hong 已提交
636
    grad->SetBlockAttr(RecurrentBase::kStepBlock, this->grad_block_[0]);
Y
Yan Chunwei 已提交
637

H
hong 已提交
638
    return std::unique_ptr<T>(grad);
Y
Yan Chunwei 已提交
639 640 641
  }
};

Y
Yu Yang 已提交
642 643 644
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
645
    std::vector<std::string> output{RecurrentBase::kOutputs};
C
chengduo 已提交
646 647 648

    // In some case the kInitialStates is empty.
    // If the kInitialStates is empty, all the states should be empty.
649
    if (!ctx->HasInputs(RecurrentBase::kInitialStates)) {
C
chengduo 已提交
650
      PADDLE_ENFORCE_EQ(
651 652 653
          ctx->Attrs()
              .Get<std::vector<std::string>>(RecurrentBase::kExStates)
              .size(),
654 655
          0, platform::errors::InvalidArgument("The Attr(%s) should be empty.",
                                               RecurrentBase::kExStates));
C
chengduo 已提交
656
      PADDLE_ENFORCE_EQ(
657 658 659
          ctx->Attrs()
              .Get<std::vector<std::string>>(RecurrentBase::kStates)
              .size(),
660 661
          0, platform::errors::InvalidArgument("The Attr(%s) should be empty.",
                                               RecurrentBase::kStates));
Y
Yu Yang 已提交
662
    }
C
chengduo 已提交
663

664 665 666 667 668 669 670 671
    PADDLE_ENFORCE_EQ(
        ctx->HasInputs(RecurrentBase::kInputs), true,
        platform::errors::InvalidArgument("The input(%s) should not be empty.",
                                          RecurrentBase::kInputs));
    PADDLE_ENFORCE_EQ(
        ctx->HasInputs(RecurrentBase::kOutputs), true,
        platform::errors::InvalidArgument("The input(%s) should not be empty.",
                                          RecurrentBase::kOutputs));
C
chengduo 已提交
672 673

    // In some case the kInitialStates is empty.
674 675 676
    if (ctx->HasInputs(RecurrentBase::kInitialStates) &&
        ctx->HasOutputs(
            framework::GradVarName(RecurrentBase::kInitialStates))) {
677 678
      ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kInitialStates),
                         ctx->GetInputsDim(RecurrentBase::kInitialStates));
Y
Yan Chunwei 已提交
679
    }
C
chengduo 已提交
680

681 682
    PADDLE_ENFORCE_EQ(
        ctx->HasOutputs(framework::GradVarName(RecurrentBase::kInputs)), true,
683 684 685
        platform::errors::InvalidArgument(
            "The output of(%s) should not be empty.",
            framework::GradVarName(RecurrentBase::kInputs)));
686 687
    ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kInputs),
                       ctx->GetInputsDim(RecurrentBase::kInputs));
C
chengduo 已提交
688 689

    // In some case the kParameters is empty.
690
    if (ctx->HasInputs(RecurrentBase::kParameters)) {
691
      PADDLE_ENFORCE_EQ(
692
          ctx->HasOutputs(framework::GradVarName(RecurrentBase::kParameters)),
693 694 695
          true, platform::errors::InvalidArgument(
                    "The output of(%s) should not be empty.",
                    framework::GradVarName(RecurrentBase::kParameters)));
696 697
      ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kParameters),
                         ctx->GetInputsDim(RecurrentBase::kParameters));
Y
Yu Yang 已提交
698 699 700
    }
  }
};
Y
Yan Chunwei 已提交
701 702 703 704

}  // namespace operators
}  // namespace paddle

H
hong 已提交
705 706 707 708
REGISTER_OPERATOR(
    recurrent, paddle::operators::RecurrentOp,
    paddle::operators::RecurrentOpProtoMaker,
    paddle::operators::RecurrentGradOpMaker<paddle::framework::OpDesc>);
Y
Yu Yang 已提交
709 710
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
                  paddle::operators::RecurrentGradOpShapeInference);