activation_op.cc 54.8 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/platform/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
using paddle::framework::Tensor;

35 36 37 38 39
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

40 41 42 43 44
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
45 46 47 48 49
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
50 51 52 53 54 55 56 57 58
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
59
  }
D
dzhwinter 已提交
60

H
hong 已提交
61 62
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
63
 public:
H
hong 已提交
64
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
65 66

 protected:
67
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
68 69 70 71
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
72

A
Adam 已提交
73 74
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
75 76 77
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
H
hong 已提交
78
      op->SetInput("X", this->Input("X"));
79 80 81 82
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
83
      op->SetInput("Out", this->Output("Out"));
84
    }
D
dzhwinter 已提交
85
  }
86
};
D
dzhwinter 已提交
87

88 89 90 91
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
92
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
93
  auto data_type = oper.IndicateVarDataType(ctx, name);
94 95 96 97 98 99 100 101 102 103
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
104 105 106
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
107
      oper.CanMKLDNNBeUsed(ctx, data_type)) {
108
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
109
    layout = framework::DataLayout::kMKLDNN;
110 111
  }
#endif
112
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
113 114
}

Q
qijun 已提交
115 116 117 118
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

119
  void InferShape(framework::InferShapeContext* ctx) const override {
120
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
121
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
122
  }
123

124
 protected:
125 126 127 128
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
129 130
};

C
chengduo 已提交
131 132 133
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
134
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
135
      const override {
136 137
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
138 139 140
  }
};

Q
qijun 已提交
141 142 143 144
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

145
  void InferShape(framework::InferShapeContext* ctx) const override {
146 147 148
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
149
  }
150

151
 protected:
152 153
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
154
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
155
  }
Q
qijun 已提交
156 157
};

D
dzhwinter 已提交
158
UNUSED constexpr char SigmoidDoc[] = R"DOC(
159
Sigmoid Activation Operator
K
Kexin Zhao 已提交
160

161
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
162

D
dzhwinter 已提交
163
)DOC";
Q
qijun 已提交
164

M
minghaoBD 已提交
165 166 167 168 169 170
UNUSED constexpr char SiluDoc[] = R"DOC(
Silu Activation Operator

$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC";

D
dzhwinter 已提交
171
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
172
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
173

174
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
175

D
dzhwinter 已提交
176
)DOC";
177

D
dzhwinter 已提交
178
UNUSED constexpr char ExpDoc[] = R"DOC(
179
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
180

181
$$out = e^x$$
K
Kexin Zhao 已提交
182

D
dzhwinter 已提交
183
)DOC";
Q
qijun 已提交
184

R
ronnywang 已提交
185 186 187 188 189 190 191
UNUSED constexpr char Expm1Doc[] = R"DOC(
Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

$$out = e^x - 1$$

)DOC";

D
dzhwinter 已提交
192
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
193
Relu Activation Operator.
K
Kexin Zhao 已提交
194

195
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
196

D
dzhwinter 已提交
197
)DOC";
K
Kexin Zhao 已提交
198

D
dzhwinter 已提交
199
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
200
Tanh Activation Operator.
K
Kexin Zhao 已提交
201

Q
update  
qiaolongfei 已提交
202
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
203

D
dzhwinter 已提交
204
)DOC";
205

D
dzhwinter 已提交
206
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
207
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
208

Y
Yan Chunwei 已提交
209
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
210

D
dzhwinter 已提交
211
)DOC";
K
Kexin Zhao 已提交
212

D
dzhwinter 已提交
213
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
214
Sqrt Activation Operator.
K
Kexin Zhao 已提交
215

N
Noel 已提交
216
$$out=\\sqrt{x}=x^{1/2}$$
217

218 219
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
220

D
dzhwinter 已提交
221
)DOC";
222

Z
zhoukunsheng 已提交
223 224 225 226 227
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

228
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
229 230 231

)DOC";

D
dzhwinter 已提交
232
UNUSED constexpr char CeilDoc[] = R"DOC(
233
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
234

N
Noel 已提交
235
$$out = \\lceil x \\rceil$$
D
dzhwinter 已提交
236

D
dzhwinter 已提交
237
)DOC";
D
dzhwinter 已提交
238

D
dzhwinter 已提交
239
UNUSED constexpr char FloorDoc[] = R"DOC(
240
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
241

N
Noel 已提交
242
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
243

D
dzhwinter 已提交
244
)DOC";
D
dzhwinter 已提交
245

D
dzhwinter 已提交
246
UNUSED constexpr char CosDoc[] = R"DOC(
247
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
248

Y
Yang Zhang 已提交
249 250
Input range is `(-inf, inf)` and output range is `[-1,1]`.

251
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
252

D
dzhwinter 已提交
253
)DOC";
C
add cos  
chengduoZH 已提交
254

J
joejiong 已提交
255 256 257 258 259 260 261 262 263
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
264
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
265 266
Sine Activation Operator.

267
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
268

D
dzhwinter 已提交
269
)DOC";
C
add sin  
chengduoZH 已提交
270

271 272 273 274 275 276 277 278 279 280 281 282 283 284
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

D
dzhwinter 已提交
285
UNUSED constexpr char RoundDoc[] = R"DOC(
286
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
287

N
Noel 已提交
288
.. code-block:: text
289 290 291 292 293 294 295 296

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
297

D
dzhwinter 已提交
298
)DOC";
D
dzhwinter 已提交
299

D
dzhwinter 已提交
300
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
301
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
302

303
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
304

D
dzhwinter 已提交
305
)DOC";
306

D
dzhwinter 已提交
307
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
308
Log Activation Operator.
K
Kexin Zhao 已提交
309

310
$$out = \ln(x)$$
K
Kexin Zhao 已提交
311 312 313

Natural logarithm of x.

D
dzhwinter 已提交
314 315
)DOC";

J
joejiong 已提交
316 317 318 319 320 321 322 323 324
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
325 326 327 328 329 330 331 332 333
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

334 335 336 337 338 339 340 341 342
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
343
UNUSED constexpr char SquareDoc[] = R"DOC(
344
The OP square each elements of the inputs.
D
dzhwinter 已提交
345

346
$$out = x^2$$
347

D
dzhwinter 已提交
348 349
)DOC";

D
dzhwinter 已提交
350
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
351 352
Softsign Activation Operator.

353
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
354 355 356

)DOC";

T
tink2123 已提交
357 358 359 360 361 362
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
363
Arccosine Operator.
364

T
tink2123 已提交
365
$$out = \cos^{-1}(x)$$
366

T
tink2123 已提交
367 368 369
)DOC");
  }
};
370

T
tink2123 已提交
371 372 373
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
374 375 376
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
377 378
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
379
Arcsine Operator.
380

T
tink2123 已提交
381
$$out = \sin^{-1}(x)$$
382

T
tink2123 已提交
383 384 385
)DOC");
  }
};
386

T
tink2123 已提交
387 388 389
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
390 391 392
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
393 394
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
395
Arctangent Operator.
396

397
$$out = \tan^{-1}(x)$$
398

T
tink2123 已提交
399 400 401
)DOC");
  }
};
402

D
dzhwinter 已提交
403
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
404
 public:
Y
Yu Yang 已提交
405
  void Make() override {
W
Wilber 已提交
406 407 408 409 410 411 412 413
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
414 415 416
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
417
    AddComment(R"DOC(
D
dzhwinter 已提交
418
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
419

W
Wilber 已提交
420
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
421 422

)DOC");
423 424 425
  }
};

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
        .SetDefault(false);
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
        .SetDefault(false);
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
456
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
457
 public:
Y
Yu Yang 已提交
458
  void Make() override {
D
dzhwinter 已提交
459 460 461
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
462
    AddComment(R"DOC(
463 464 465
:strong:`Softshrink Activation Operator`

..  math::
466
    out = \begin{cases}
467 468 469 470
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
471 472

)DOC");
K
kexinzhao 已提交
473 474 475
  }
};

D
dzhwinter 已提交
476
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
477
 public:
Y
Yu Yang 已提交
478
  void Make() override {
D
dzhwinter 已提交
479 480
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
481 482
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
483
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
484
    AddComment(R"DOC(
Y
yuyang18 已提交
485
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
486

Y
yuyang18 已提交
487 488 489 490 491 492
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
493 494

)DOC");
495 496 497
  }
};

498 499
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
500
  void Make() override {
501 502 503 504 505 506
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
507 508 509 510
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
511
    AddComment(R"DOC(
K
kexinzhao 已提交
512
BRelu Activation Operator.
K
Kexin Zhao 已提交
513

514
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
515 516

)DOC");
517 518 519 520 521
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
522
  void Make() override {
523
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
524
    AddOutput("Out", "Output of SoftRelu operator");
525 526
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
527
    AddComment(R"DOC(
K
kexinzhao 已提交
528
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
529

530
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
531 532

)DOC");
533 534 535
  }
};

536 537
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
538
  void Make() override {
539 540 541 542 543 544
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
545
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
546
    AddComment(R"DOC(
K
kexinzhao 已提交
547
ELU Activation Operator.
K
Kexin Zhao 已提交
548 549 550 551

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

552
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
553 554

)DOC");
555 556 557
  }
};

558 559
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
560
  void Make() override {
Z
zhupengyang 已提交
561 562 563 564 565 566 567 568
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
569
        .SetDefault(6.0f);
A
Adam 已提交
570 571 572
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
573
    AddComment(R"DOC(
K
kexinzhao 已提交
574
Relu6 Activation Operator.
K
Kexin Zhao 已提交
575

576
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
577 578

)DOC");
579 580 581
  }
};

582 583
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
584
  void Make() override {
585
    AddInput("X", "Input of Pow operator");
586 587 588 589 590
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
591
    AddOutput("Out", "Output of Pow operator");
592
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
593
    AddComment(R"DOC(
K
kexinzhao 已提交
594
Pow Activation Operator.
K
Kexin Zhao 已提交
595

596
$$out = x^{factor}$$
K
Kexin Zhao 已提交
597 598

)DOC");
599 600 601 602 603
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
604
  void Make() override {
605 606
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
607
             " A Tensor with type float32, float64.");
608 609 610
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
611 612
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
613
    AddComment(R"DOC(
K
kexinzhao 已提交
614
STanh Activation Operator.
K
Kexin Zhao 已提交
615

Y
Yan Chunwei 已提交
616
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
617 618

)DOC");
Q
qijun 已提交
619 620 621
  }
};

622 623
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
624
  void Make() override {
625
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
626
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
627 628
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
629
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
630
    AddComment(R"DOC(
Y
yuyang18 已提交
631
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
632

Y
yuyang18 已提交
633
..  math::
K
Kexin Zhao 已提交
634

Y
yuyang18 已提交
635
    out = \begin{cases}
Y
yuyang18 已提交
636
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
637 638
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
639
)DOC");
640 641 642
  }
};

643 644
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
645
  void Make() override {
646 647 648 649 650
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
651
        .SetDefault(0.2f);
652 653 654
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
655
        .SetDefault(0.5f);
656
    AddComment(R"DOC(
K
kexinzhao 已提交
657
HardSigmoid Activation Operator.
658

659
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
660
which is much faster than sigmoid.
661

662
$$out = \max(0, \min(1, slope * x + offset))$$
663

K
Kexin Zhao 已提交
664
)DOC");
665 666 667
  }
};

A
Abhinav Arora 已提交
668 669
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
670
  void Make() override {
A
Abhinav Arora 已提交
671
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
672
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
673
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
674 675 676
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
A
Abhinav Arora 已提交
677 678 679
    AddComment(R"DOC(
Swish Activation Operator.

680
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
681 682 683 684 685

)DOC");
  }
};

H
huangjun12 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

702
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
703 704 705 706 707 708 709 710 711

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
712
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
M
minghaoBD 已提交
713
REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc);
D
dzhwinter 已提交
714 715
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
R
ronnywang 已提交
716
REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc);
D
dzhwinter 已提交
717 718 719 720
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
721
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
722 723 724
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
725
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
726
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
727 728
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
D
dzhwinter 已提交
729 730 731
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
732
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
733
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
734
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
735 736 737
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

738
template <ActBwdOpFwdDeps kDepValue>
739 740 741 742 743
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
744
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
745
      if (ctx->HasOutput("DX")) {
746 747 748
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
749
      if (ctx->HasOutput("DDOut")) {
750 751 752
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
753
    }
754
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
755
      if (ctx->HasOutput("DOut")) {
756 757 758
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
787 788 789
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
790 791 792 793 794 795 796 797 798 799
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
template <typename T>
class SigmoidDoubleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
template <typename T>
class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

841 842
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
843 844
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
845
 public:
H
hong 已提交
846
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
847 848

 protected:
849
  void Apply(GradOpPtr<T> op) const override {
850 851
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
852
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
853
    // input2: ddx
H
hong 已提交
854 855
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
856
    // output: ddy
H
hong 已提交
857
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
858 859 860
  }
};

861 862
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
863
template <typename T>
864
class LeakyReluDoubleGradMaker
H
hong 已提交
865
    : public ::paddle::framework::SingleGradOpMaker<T> {
866
 public:
H
hong 已提交
867
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
868 869

 protected:
870
  void Apply(GradOpPtr<T> op) const override {
871
    op->SetType("leaky_relu_grad_grad");
872 873
    // input1: X
    op->SetInput("X", this->Input("X"));
874
    // X@GRAD@GRAD: ddx
H
hong 已提交
875 876
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
877
    // Out@GRAD@GRAD: ddy
H
hong 已提交
878
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
879 880 881
  }
};

D
Double_V 已提交
882 883 884 885 886 887 888 889
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
890
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
905 906
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
907 908
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
909
 public:
H
hong 已提交
910
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
911 912

 protected:
913
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
914
    op->SetType("sqrt_grad_grad");
H
hong 已提交
915 916 917 918 919 920
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
921 922 923
  }
};

W
whs 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

943 944
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
945 946
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
947
 public:
H
hong 已提交
948
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
949 950

 protected:
951
  void Apply(GradOpPtr<T> op) const override {
952
    op->SetType("square_grad_grad");
H
hong 已提交
953
    op->SetInput("X", this->Input("X"));
954
    // Out@GRAD: dy
H
hong 已提交
955
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
956
    // X@GRAD@GRAD: ddx
H
hong 已提交
957
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
958

H
hong 已提交
959
    op->SetAttrMap(this->Attrs());
960 961

    // X@GRAD: dx
H
hong 已提交
962
    op->SetOutput("DX", this->InputGrad("X"));
963
    // Out@GRAD@GRAD: ddy
H
hong 已提交
964
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
965 966 967
  }
};

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

990
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
991 992
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
993
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
994
                           {"DDX", "DDOut"});
995

H
hong 已提交
996 997
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
998
 public:
H
hong 已提交
999
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1000 1001

 protected:
1002
  void Apply(GradOpPtr<T> op) const override {
1003
    op->SetType("pow_grad");
H
hong 已提交
1004 1005 1006 1007 1008
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
1063
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1064 1065 1066 1067
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1068
namespace plat = paddle::platform;
1069

1070 1071 1072 1073
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1074 1075 1076 1077
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1078
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1079
                       ops::ActFwdInplaceInferer, void>::type);             \
1080
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
1081
                    ops::ActivationGradOpInplaceInferer);
1082 1083 1084

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
1095
                                ops::grad_functor<double>>);
1096

1097 1098
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/* ==========================    sigmoid register  =============================
 */
// 1. Register Sigmoid Operator
REGISTER_OPERATOR(
    sigmoid, ops::ActivationOp, ops::SigmoidOpMaker,
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::SigmoidGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);

// 2. Register Sigmoid Grad Operator
REGISTER_OPERATOR(sigmoid_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::SigmoidDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SigmoidDoubleGradMaker<paddle::imperative::OpBase>)

// 3. Register Sigmoid DoubleGrad Operator
REGISTER_OPERATOR(
    sigmoid_grad_grad,
    ops::ActivationOpDoubleGrad<ops::SigmoidGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

// Register Sigmoid/GradSigmoid Kernels
REGISTER_ACTIVATION_CPU_KERNEL(sigmoid, Sigmoid, SigmoidFunctor,
                               SigmoidGradFunctor);

// Register DoubleGrad Kernel
REGISTER_OP_CPU_KERNEL(
    sigmoid_grad_grad,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<float>>,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<double>>,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<plat::float16>>);

/* ========================================================================== */

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
/* ==========================    tanh register  ============================= */
REGISTER_OPERATOR(
    tanh, ops::ActivationOp, ops::TanhOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::TanhGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(tanh_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::TanhDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::TanhDoubleGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(
    tanh_grad_grad,
    ops::ActivationOpDoubleGrad<ops::TanhGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(tanh, Tanh, TanhFunctor, TanhGradFunctor);
REGISTER_OP_CPU_KERNEL(
    tanh_grad_grad, ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::TanhGradGradFunctor<float>>,
    ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                              ops::TanhGradGradFunctor<double>>,
    ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                              ops::TanhGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1169
/* ==========================    relu register  ============================= */
1170 1171
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1172 1173 1174 1175
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1176
    ops::ActFwdInplaceInferer);
1177
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
1178
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1179 1180
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1181 1182
REGISTER_OPERATOR(
    relu_grad_grad,
1183
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1184
    ops::ActivationDoubleGradOpInplaceInferer);
1185

1186
REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluCPUFunctor, ReluGradFunctor);
1187 1188 1189 1190 1191 1192 1193 1194 1195

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
1196
/* ========================================================================== */
1197

1198
/* ======================== leaky relu register  ============================ */
1199 1200 1201
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1202 1203 1204 1205
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1206
    ops::ActFwdInplaceInferer);
1207
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
1208
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1209 1210
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1211 1212
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1213
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1214
    ops::ActivationDoubleGradOpInplaceInferer);
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1226 1227
/* ========================================================================== */

D
Double_V 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1237
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1238 1239 1240 1241 1242
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1243
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1256 1257 1258
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1259 1260 1261 1262
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1263
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1264
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1265
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1266 1267
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1268 1269
REGISTER_OPERATOR(
    sqrt_grad_grad,
1270
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1271
    ops::ActivationDoubleGradOpInplaceInferer);
1272

L
lvmengsi 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

W
whs 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
    rsqrt, ops::ActivationOp, ops::RsqrtOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(rsqrt_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1312 1313 1314 1315
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1316 1317 1318 1319
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1320
    ops::ActFwdInplaceInferer);
1321
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1322
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1323 1324
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1325 1326
REGISTER_OPERATOR(
    square_grad_grad,
1327
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1328
    ops::ActivationDoubleGradOpInplaceInferer);
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1348 1349 1350 1351 1352 1353 1354 1355

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1356 1357 1358 1359 1360
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1361
/* ========================================================================== */
1362 1363 1364 1365 1366

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1367 1368
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1369
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1370
                     ops::ActFwdInplaceInferer, void>::type);
1371
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1372
                  ops::ActivationGradOpInplaceInferer);
1373 1374 1375

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1376 1377 1378
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1379 1380 1381
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1397
                  ops::ActivationGradOpInplaceInferer);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */
R
ronnywang 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

/* ==========================   expm1 register  ============================ */
REGISTER_OPERATOR(
    expm1, ops::ActivationOp, ops::Expm1OpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::Expm1GradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(expm1_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer);

REGISTER_OP_CPU_KERNEL(expm1,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<plat::float16>>);
REGISTER_OP_CPU_KERNEL(
    expm1_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                          ops::Expm1GradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<plat::float16>>);
/* ========================================================================== */
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
    log, ops::ActivationOp, ops::LogOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(log_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(log, Log, LogFunctor, LogGradFunctor);

REGISTER_OP_CPU_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
REGISTER_OP_VERSION(softplus)
    .AddCheckpoint(
        R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("beta", "The beta value of the new formula", 1.0f)
            .NewAttr("threshold", "The threshold value of the new formula",
                     20.0f));

1505
/* ========================================================================== */