/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/activation_op.h" #include #include #include #include #include #include "paddle/fluid/framework/op_version_registry.h" #include "paddle/fluid/operators/common_infer_shape_functions.h" #include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h" #include "paddle/fluid/platform/port.h" DECLARE_bool(use_mkldnn); namespace paddle { namespace operators { using paddle::framework::Tensor; template static constexpr bool CanInplaceAct() { return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps; } #define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT) \ class OP_NAME##OpMaker \ : public ::paddle::framework::OpProtoAndCheckerMaker { \ public: \ void Make() override { \ AddInput("X", "Input of " #OP_NAME \ " operator, an N-D Tensor, with data type float32, " \ "float64 or float16."); \ AddOutput("Out", "Output of " #OP_NAME \ " operator, a Tensor with shape same as input."); \ AddAttr("use_mkldnn", \ "(bool, default false) Only used in mkldnn kernel") \ .SetDefault(false); \ AddAttr("use_cudnn", \ "(bool, default false) Only used in cudnn kernel, need " \ "install cudnn") \ .SetDefault(false); \ AddComment(OP_COMMENT); \ } \ } template class ActivationGradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType(this->ForwardOpType() + "_grad"); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetAttrMap(this->Attrs()); if ((static_cast(kDepValue) & static_cast(ActBwdOpFwdDeps::kDepX)) || FLAGS_use_mkldnn || (op->HasAttr("use_mkldnn") && BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) { op->SetInput("X", this->Input("X")); } if (static_cast(kDepValue) & static_cast(ActBwdOpFwdDeps::kDepOut)) { op->SetInput("Out", this->Output("Out")); } } }; framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx, const framework::OperatorWithKernel& oper, const std::string& name) { framework::LibraryType library{framework::LibraryType::kPlain}; framework::DataLayout layout = framework::DataLayout::kAnyLayout; auto data_type = oper.IndicateVarDataType(ctx, name); // FIXME(liuwei1031) temporarily disable the code to unblock users // TODO(liuwei1031) figure out the reason behind // https://github.com/PaddlePaddle/Paddle/issues/16096 // and re-enable this in the future // #ifdef PADDLE_WITH_CUDA // auto it1 = oper.Attrs().find("use_cudnn"); // if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) { // library = framework::LibraryType::kCUDNN; // } // #endif #ifdef PADDLE_WITH_MKLDNN auto it = oper.Attrs().find("use_mkldnn"); if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() && oper.CanMKLDNNBeUsed(ctx, data_type)) { library = framework::LibraryType::kMKLDNN; layout = framework::DataLayout::kMKLDNN; } #endif return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library); } class ActivationOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { ctx->ShareDim("X", /*->*/ "Out"); ctx->ShareLoD("X", /*->*/ "Out"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return GetKernelType(ctx, *this, "X"); } }; class ActivationOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput { protected: std::unordered_map& GetInputOutputWithSameType() const override { static std::unordered_map m{{"X", /*->*/ "Out"}}; return m; } }; class ActivationOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { auto out_grad_name = framework::GradVarName("Out"); ctx->ShareDim(out_grad_name, framework::GradVarName("X")); ctx->ShareLoD(out_grad_name, framework::GradVarName("X")); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return GetKernelType(ctx, *this, framework::GradVarName("Out")); } }; UNUSED constexpr char SigmoidDoc[] = R"DOC( Sigmoid Activation Operator $$out = \\frac{1}{1 + e^{-x}}$$ )DOC"; UNUSED constexpr char SiluDoc[] = R"DOC( Silu Activation Operator $$out = x * \\frac{1}{1 + e^{-x}}$$ )DOC"; UNUSED constexpr char LogSigmoidDoc[] = R"DOC( Logsigmoid Activation Operator $$out = \\log \\frac{1}{1 + e^{-x}}$$ )DOC"; UNUSED constexpr char ExpDoc[] = R"DOC( Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base. $$out = e^x$$ )DOC"; UNUSED constexpr char Expm1Doc[] = R"DOC( Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base. $$out = e^x - 1$$ )DOC"; UNUSED constexpr char ReluDoc[] = R"DOC( Relu Activation Operator. $$out = \max(x, 0)$$ )DOC"; UNUSED constexpr char TanhDoc[] = R"DOC( Tanh Activation Operator. $$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ )DOC"; UNUSED constexpr char TanhShrinkDoc[] = R"DOC( TanhShrink Activation Operator. $$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ )DOC"; UNUSED constexpr char SqrtDoc[] = R"DOC( Sqrt Activation Operator. $$out=\\sqrt{x}=x^{1/2}$$ **Note**: input value must be greater than or equal to zero. )DOC"; UNUSED constexpr char RsqrtDoc[] = R"DOC( Rsqrt Activation Operator. Please make sure input is legal in case of numeric errors. $$out = \\frac{1}{\\sqrt{x}}$$ )DOC"; UNUSED constexpr char CeilDoc[] = R"DOC( Ceil Operator. Computes ceil of x element-wise. $$out = \\lceil x \\rceil$$ )DOC"; UNUSED constexpr char FloorDoc[] = R"DOC( Floor Activation Operator. Computes floor of x element-wise. $$out = \\lfloor x \\rfloor$$ )DOC"; UNUSED constexpr char CosDoc[] = R"DOC( Cosine Operator. Computes cosine of x element-wise. Input range is `(-inf, inf)` and output range is `[-1,1]`. $$out = cos(x)$$ )DOC"; UNUSED constexpr char TanDoc[] = R"DOC( Tangent Operator. Computes tangent of x element-wise. Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`. $$out = tan(x)$$ )DOC"; UNUSED constexpr char SinDoc[] = R"DOC( Sine Activation Operator. $$out = sin(x)$$ )DOC"; UNUSED constexpr char SinhDoc[] = R"DOC( Sinh Activation Operator. $$out = sinh(x)$$ )DOC"; UNUSED constexpr char CoshDoc[] = R"DOC( Cosh Activation Operator. $$out = cosh(x)$$ )DOC"; UNUSED constexpr char RoundDoc[] = R"DOC( The OP rounds the values in the input to the nearest integer value. .. code-block:: text input: x.shape = [4] x.data = [1.2, -0.9, 3.4, 0.9] output: out.shape = [4] out.data = [1., -1., 3., 1.] )DOC"; UNUSED constexpr char ReciprocalDoc[] = R"DOC( Reciprocal Activation Operator. $$out = \\frac{1}{x}$$ )DOC"; UNUSED constexpr char LogDoc[] = R"DOC( Log Activation Operator. $$out = \ln(x)$$ Natural logarithm of x. )DOC"; UNUSED constexpr char Log2Doc[] = R"DOC( Log2 Activation Operator. $$out = \log_2x$$ logarithm of x base to 2. )DOC"; UNUSED constexpr char Log10Doc[] = R"DOC( Log10 Activation Operator. $$out = \log_10_x$$ logarithm of x base to 10. )DOC"; UNUSED constexpr char Log1pDoc[] = R"DOC( Log Activation Operator. $out = \ln(x+1)$ Natural logarithm of x. )DOC"; UNUSED constexpr char SquareDoc[] = R"DOC( The OP square each elements of the inputs. $$out = x^2$$ )DOC"; UNUSED constexpr char SoftsignDoc[] = R"DOC( Softsign Activation Operator. $$out = \\frac{x}{1 + \|x\|}$$ )DOC"; class AcosOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of acos operator"); AddOutput("Out", "Output of acos operator"); AddComment(R"DOC( Arccosine Operator. $$out = \cos^{-1}(x)$$ )DOC"); } }; class AsinOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of asin operator, an N-D Tensor, with data type float32, " "float64 or float16."); AddOutput("Out", "Output of asin operator"); AddComment(R"DOC( Arcsine Operator. $$out = \sin^{-1}(x)$$ )DOC"); } }; class AtanOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of atan operator, an N-D Tensor, with data type float32, " "float64 or float16."); AddOutput("Out", "Output of atan operator"); AddComment(R"DOC( Arctangent Operator. $$out = \tan^{-1}(x)$$ )DOC"); } }; class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "A LoDTensor or Tensor representing preactivation values. Must be " "one of the following types: float32, float64."); AddOutput( "Out", "A LoDTensor or Tensor with the same type and size as that of x."); AddAttr("alpha", "Slope of the activation function at x < 0.") .SetDefault(0.02f); AddAttr("use_mkldnn", "(bool, default false) Only used in mkldnn kernel") .SetDefault(false); AddComment(R"DOC( LeakyRelu Activation Operator. $$out = \max(x, \alpha * x)$$ )DOC"); } }; class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of Softplus operator, an N-D Tensor, with data type " "float32, float64 or float16."); AddOutput( "Out", "Output of Softplus operator, a Tensor with shape same as input."); AddAttr("beta", "The value of beta for Softplus.").SetDefault(1.0f); AddAttr("threshold", "The value of threshold for Softplus.") .SetDefault(20.0f); AddAttr("use_mkldnn", "(bool, default false) Only used in mkldnn kernel.") .SetDefault(false); AddAttr( "use_cudnn", "(bool, default false) Only used in cudnn kernel, need install cudnn.") .SetDefault(false); AddComment(R"DOC( :strong:`Softplus Activation Operator` .. math:: out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\ \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold. )DOC"); } }; class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of Softshrink operator"); AddOutput("Out", "Output of Softshrink operator"); AddAttr("lambda", "non-negative offset").SetDefault(0.5f); AddComment(R"DOC( :strong:`Softshrink Activation Operator` .. math:: out = \begin{cases} x - \lambda, \text{if } x > \lambda \\ x + \lambda, \text{if } x < -\lambda \\ 0, \text{otherwise} \end{cases} )DOC"); } }; class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of HardShrink operator"); AddOutput("Out", "Output of HardShrink operator"); AddAttr("threshold", "The value of threshold for HardShrink. [default: 0.5]") .SetDefault(0.5f); AddComment(R"DOC( :strong:`HardShrink activation operator` .. math:: out = \begin{cases} x, \text{if } x > \lambda \\ x, \text{if } x < -\lambda \\ 0, \text{otherwise} \end{cases} )DOC"); } }; class BReluOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "The input is a multi-dimensional Tensor. The data type is " "float32, float64."); AddOutput("Out", "The output is a multi-dimensional Tensor which has same " "dimension and data type as the ``X``."); AddAttr("t_min", "The min marginal value of BRelu") .SetDefault(static_cast(0)); AddAttr("t_max", "The max marginal value of BRelu") .SetDefault(static_cast(24)); AddComment(R"DOC( BRelu Activation Operator. $$out = \min(\max(x, t_{min}), t_{max})$$ )DOC"); } }; class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of SoftRelu operator"); AddOutput("Out", "Output of SoftRelu operator"); AddAttr("threshold", "The threshold value of SoftRelu") .SetDefault(40.0f); AddComment(R"DOC( SoftRelu Activation Operator. $$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$ )DOC"); } }; class ELUOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "The input is a multi-dimensional Tensor. The data type is " "float32 or float64."); AddOutput("Out", "The output is a multi-dimensional Tensor which has same " "dimension and data type as the ``x``."); AddAttr("alpha", "The alpha value of ELU").SetDefault(1.0f); AddComment(R"DOC( ELU Activation Operator. Applies the following element-wise computation on the input according to https://arxiv.org/abs/1511.07289. $$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$ )DOC"); } }; class Relu6OpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of relu6 operator, an N-D Tensor, " "with data type float32, float64."); AddOutput( "Out", "Output of relu6 operator, a Tensor with the same shape as input."); AddAttr("threshold", "The threshold value of Relu6. Default is 6.0. ") .SetDefault(6.0f); AddAttr("use_mkldnn", "(bool, default false) Only used in mkldnn kernel") .SetDefault(false); AddComment(R"DOC( Relu6 Activation Operator. $$out = \min(\max(0, x), threshold)$$ )DOC"); } }; class PowOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of Pow operator"); AddInput("FactorTensor", "(Tensor, optional). If provided, pow will use this" "The shape of FactorTensor MUST BE [1]." "it has higher priority than attr(factor).") .AsDispensable(); AddOutput("Out", "Output of Pow operator"); AddAttr("factor", "The exponential factor of Pow").SetDefault(1.0f); AddComment(R"DOC( Pow Activation Operator. $$out = x^{factor}$$ )DOC"); } }; class STanhOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of STanh operator." " A Tensor with type float32, float64."); AddOutput("Out", "Output of STanh operator. A Tensor with type float32."); AddAttr("scale_a", "The scale parameter of a for the input. ") .SetDefault(0.67f); AddAttr("scale_b", "The scale parameter of b for the input") .SetDefault(1.7159f); AddComment(R"DOC( STanh Activation Operator. $$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$ )DOC"); } }; class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of ThresholdedRelu operator"); AddOutput("Out", "Output of ThresholdedRelu operator"); AddAttr("threshold", "The threshold location of activation. [default 1.0].") .SetDefault(1.0f); AddComment(R"DOC( :strong:`ThresholdedRelu activation operator` .. math:: out = \begin{cases} x, \text{if } x > threshold \\ 0, \text{otherwise} \end{cases} )DOC"); } }; class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "An N-D Tensor with data type float32, float64. "); AddOutput("Out", "A Tensor with the same shape as input. "); AddAttr("slope", "The slope of the linear approximation of sigmoid. Its " "value MUST BE positive. Default is 0.2. ") .SetDefault(0.2f); AddAttr( "offset", "The offset of the linear approximation of sigmoid. Default is 0.5. ") .SetDefault(0.5f); AddComment(R"DOC( HardSigmoid Activation Operator. A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391), which is much faster than sigmoid. $$out = \max(0, \min(1, slope * x + offset))$$ )DOC"); } }; class SwishOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of Swish operator"); AddOutput("Out", "Output of Swish operator"); AddAttr("beta", "Constant beta of swish operator").SetDefault(1.0f); AddAttr("use_mkldnn", "(bool, default false) Only used in mkldnn kernel") .SetDefault(false); AddComment(R"DOC( Swish Activation Operator. $$out = \\frac{x}{1 + e^{- \beta \ x}}$$ )DOC"); } }; class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input of HardSwish operator"); AddOutput("Out", "Output of HardSwish operator"); AddAttr("threshold", "The threshold parameter of HardSwish operator") .SetDefault(6.0f); AddAttr("scale", "The scale parameter of HardSwish operator") .SetDefault(6.0f); AddAttr("offset", "The offset parameter of HardSwish operator") .SetDefault(3.0f); AddComment(R"DOC( HardSwish Activation Operator. The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf). $$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$ The threshold and scale should be positive. The offset can be either positive or negative. The default parameters are set according to the above reference. It is recommended to use the defaults for this activation. )DOC"); } }; REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc); REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc); REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc); REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc); REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc); REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc); REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc); REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc); REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc); REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc); REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc); REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc); REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc); REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc); REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc); REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc); REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc); REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc); REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc); REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc); REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc); REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc); REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc); REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc); REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc); template class ActivationOpDoubleGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { if (static_cast(kDepValue) & static_cast(kDepX)) { if (ctx->HasOutput("DX")) { ctx->ShareDim("X", "DX"); ctx->ShareLoD("X", "DX"); } if (ctx->HasOutput("DDOut")) { ctx->ShareDim("X", "DDOut"); ctx->ShareLoD("X", "DDOut"); } } if (static_cast(kDepValue) & static_cast(kDepOut)) { if (ctx->HasOutput("DOut")) { ctx->ShareDim("Out", "DOut"); ctx->ShareLoD("Out", "DOut"); } if (ctx->HasOutput("DDOut")) { ctx->ShareDim("Out", "DDOut"); ctx->ShareLoD("Out", "DDOut"); } } } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return GetKernelType(ctx, *this, "DDX"); } }; template class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { if (static_cast(kDepValue) & static_cast(kDepX)) { if (ctx->HasOutput("DDOut")) { ctx->ShareDim("X", "DDOut"); ctx->ShareLoD("X", "DDOut"); } } if (static_cast(kDepValue) & static_cast(kDepOut)) { if (ctx->HasOutput("DDOut")) { ctx->ShareDim("Out", "DDOut"); ctx->ShareLoD("Out", "DDOut"); } } } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return GetKernelType(ctx, *this, "DDX"); } }; template class SigmoidDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { public: using ::paddle::framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("sigmoid_grad_grad"); // input1: Out op->SetInput("Out", this->Input("Out")); // input2: ddx op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetInput("DOut", this->Input(framework::GradVarName("Out"))); op->SetAttrMap(this->Attrs()); // output: ddy op->SetOutput("DOutNew", this->InputGrad("Out")); op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out"))); } }; template class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { public: using ::paddle::framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("tanh_grad_grad"); // input1: Out op->SetInput("Out", this->Input("Out")); // input2: ddx op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetInput("DOut", this->Input(framework::GradVarName("Out"))); op->SetAttrMap(this->Attrs()); // output: ddy op->SetOutput("DOutNew", this->InputGrad("Out")); op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out"))); } }; // ReluGrad: dx = dy if y >= 0 else 0 // ReluGradGrad: ddy = ddx if y >= 0 else 0 template class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { public: using ::paddle::framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("relu_grad_grad"); // input1: Out op->SetInput("Out", this->Input("Out")); // input2: ddx op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetAttrMap(this->Attrs()); // output: ddy op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out"))); } }; // leaky_relu Grad: dx=dy if x>=0 else alpha * dy // leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx template class LeakyReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { public: using ::paddle::framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("leaky_relu_grad_grad"); // input1: X op->SetInput("X", this->Input("X")); // X@GRAD@GRAD: ddx op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetAttrMap(this->Attrs()); // Out@GRAD@GRAD: ddy op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out"))); } }; // elu grad: dx=dy if y>0 else alpha*dy*x.exp() // elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp() template class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { public: using ::paddle::framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("elu_grad_grad"); op->SetInput("X", this->Input("X")); op->SetInput("DOut", this->Input(framework::GradVarName("Out"))); // X@GRAD@GRAD: ddx op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetAttrMap(this->Attrs()); // Out@GRAD@GRAD: ddy op->SetOutput("DX", this->InputGrad("X")); op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out"))); } }; // sqrt Grad: dx = 0.5 * dy / y // sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx template class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { public: using ::paddle::framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("sqrt_grad_grad"); op->SetInput("Out", this->Input("Out")); op->SetInput("DX", this->Output(framework::GradVarName("X"))); op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetAttrMap(this->Attrs()); op->SetOutput("DOut", this->InputGrad("Out")); op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out"))); } }; // rsqrt Grad: dx = -0.5 * dy * y * y * y // rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx template class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { public: using ::paddle::framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("rsqrt_grad_grad"); op->SetInput("Out", this->Input("Out")); op->SetInput("DX", this->Output(framework::GradVarName("X"))); op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetAttrMap(this->Attrs()); op->SetOutput("DOut", this->InputGrad("Out")); op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out"))); } }; // square Grad: dx=2x*dy // square GradGrad: ddy=2x*ddx, dx=2dy*ddx template class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { public: using ::paddle::framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("square_grad_grad"); op->SetInput("X", this->Input("X")); // Out@GRAD: dy op->SetInput("DOut", this->Input(framework::GradVarName("Out"))); // X@GRAD@GRAD: ddx op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetAttrMap(this->Attrs()); // X@GRAD: dx op->SetOutput("DX", this->InputGrad("X")); // Out@GRAD@GRAD: ddy op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out"))); } }; // log Grad: dx = dout / x // log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x) template class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { public: using ::paddle::framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("log_grad_grad"); op->SetInput("X", this->Input("X")); // X@GRAD@GRAD: ddx op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetInput("DOut", this->Input(framework::GradVarName("Out"))); op->SetAttrMap(this->Attrs()); // X@GRAD: dx op->SetOutput("DX", this->InputGrad("X")); // Out@GRAD@GRAD: ddy op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out"))); } }; DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer, {framework::GradVarName("Out"), framework::GradVarName("X")}); DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer, {"DDX", "DDOut"}); template class PowGradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("pow_grad"); op->SetInput("X", this->Input("X")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetInput("FactorTensor", this->Input("FactorTensor")); op->SetAttrMap(this->Attrs()); } }; class PowOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { ctx->ShareDim("X", /*->*/ "Out"); ctx->ShareLoD("X", /*->*/ "Out"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return GetKernelType(ctx, *this, "X"); } framework::OpKernelType GetKernelTypeForVar( const std::string& var_name, const Tensor& tensor, const framework::OpKernelType& expected_kernel_type) const override { if (var_name == "FactorTensor") { return expected_kernel_type; } return framework::OpKernelType(expected_kernel_type.data_type_, tensor.place(), tensor.layout()); } }; class PowOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { auto out_grad_name = framework::GradVarName("Out"); ctx->ShareDim(out_grad_name, framework::GradVarName("X")); ctx->ShareLoD(out_grad_name, framework::GradVarName("X")); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return GetKernelType(ctx, *this, framework::GradVarName("Out")); } framework::OpKernelType GetKernelTypeForVar( const std::string& var_name, const Tensor& tensor, const framework::OpKernelType& expected_kernel_type) const override { if (var_name == "FactorTensor") { return expected_kernel_type; } return framework::OpKernelType(expected_kernel_type.data_type_, tensor.place(), tensor.layout()); } }; DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"}); } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; #define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \ REGISTER_OPERATOR( \ KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker, \ ops::ActivationOpInferVarType, \ ops::ActivationGradOpMaker::FwdDeps(), \ paddle::framework::OpDesc>, \ ops::ActivationGradOpMaker::FwdDeps(), \ paddle::imperative::OpBase>, \ std::conditional>(), \ ops::ActFwdInplaceInferer, void>::type); \ REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad, \ ops::ActivationGradOpInplaceInferer); #define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor, \ grad_functor) \ REGISTER_OP_CPU_KERNEL( \ act_type, ops::ActivationKernel>, \ ops::ActivationKernel>); \ REGISTER_OP_CPU_KERNEL( \ act_type##_grad, \ ops::ActivationGradKernel>, \ ops::ActivationGradKernel>); FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP); FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL); /* ========================== sigmoid register ============================= */ // 1. Register Sigmoid Operator REGISTER_OPERATOR( sigmoid, ops::ActivationOp, ops::SigmoidOpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, std::conditional>(), ops::ActFwdInplaceInferer, void>::type); // 2. Register Sigmoid Grad Operator REGISTER_OPERATOR(sigmoid_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer, ops::SigmoidDoubleGradMaker, ops::SigmoidDoubleGradMaker) // 3. Register Sigmoid DoubleGrad Operator REGISTER_OPERATOR( sigmoid_grad_grad, ops::ActivationOpDoubleGrad::FwdDeps()>, ops::ActivationDoubleGradOpInplaceInferer); // Register Sigmoid/GradSigmoid Kernels REGISTER_ACTIVATION_CPU_KERNEL(sigmoid, Sigmoid, SigmoidFunctor, SigmoidGradFunctor); // Register DoubleGrad Kernel REGISTER_OP_CPU_KERNEL( sigmoid_grad_grad, ops::SigmoidDoubleGradKernel>, ops::SigmoidDoubleGradKernel>, ops::SigmoidDoubleGradKernel>); /* ========================================================================== */ /* ========================== tanh register ============================= */ REGISTER_OPERATOR( tanh, ops::ActivationOp, ops::TanhOpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, std::conditional>(), ops::ActFwdInplaceInferer, void>::type); REGISTER_OPERATOR(tanh_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer, ops::TanhDoubleGradMaker, ops::TanhDoubleGradMaker) REGISTER_OPERATOR( tanh_grad_grad, ops::ActivationOpDoubleGrad::FwdDeps()>, ops::ActivationDoubleGradOpInplaceInferer); REGISTER_ACTIVATION_CPU_KERNEL(tanh, Tanh, TanhFunctor, TanhGradFunctor); REGISTER_OP_CPU_KERNEL( tanh_grad_grad, ops::TanhDoubleGradKernel>, ops::TanhDoubleGradKernel>, ops::TanhDoubleGradKernel>); /* ========================================================================== */ /* ========================== relu register ============================= */ REGISTER_OPERATOR( relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, ops::ActFwdInplaceInferer); REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer, ops::ReluDoubleGradMaker, ops::ReluDoubleGradMaker); REGISTER_OPERATOR( relu_grad_grad, ops::ActivationOpDoubleGrad2::FwdDeps()>, ops::ActivationDoubleGradOpInplaceInferer); REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluCPUFunctor, ReluGradFunctor); REGISTER_OP_CPU_KERNEL( relu_grad_grad, ops::ActivationDoubleGradKernel>, ops::ActivationDoubleGradKernel>, ops::ActivationDoubleGradKernel>); /* ========================================================================== */ /* ======================== leaky relu register ============================ */ REGISTER_OPERATOR( leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, ops::ActFwdInplaceInferer); REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer, ops::LeakyReluDoubleGradMaker, ops::LeakyReluDoubleGradMaker); REGISTER_OPERATOR( leaky_relu_grad_grad, ops::ActivationOpDoubleGrad2::FwdDeps()>, ops::ActivationDoubleGradOpInplaceInferer); REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor, LeakyReluGradFunctor); REGISTER_OP_CPU_KERNEL( leaky_relu_grad_grad, ops::ActivationDoubleGradKernel>, ops::ActivationDoubleGradKernel>, ops::ActivationDoubleGradKernel< plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor>); /* ========================================================================== */ /* ======================== elu register ============================ */ REGISTER_OPERATOR( elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, ops::ActFwdInplaceInferer); REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer, ops::ELUDoubleGradMaker, ops::ELUDoubleGradMaker); REGISTER_OPERATOR( elu_grad_grad, ops::ActivationOpDoubleGrad::FwdDeps()>, ops::ActivationDoubleGradOpInplaceInferer); REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor); REGISTER_OP_CPU_KERNEL( elu_grad_grad, ops::ELUDoubleGradKernel>, ops::ELUDoubleGradKernel>, ops::ELUDoubleGradKernel>); /* ========================================================================== */ /* =========================== sqrt register ============================= */ REGISTER_OPERATOR( sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, ops::ActFwdInplaceInferer); REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer, ops::SqrtDoubleGradMaker, ops::SqrtDoubleGradMaker); REGISTER_OPERATOR( sqrt_grad_grad, ops::ActivationOpDoubleGrad::FwdDeps()>, ops::ActivationDoubleGradOpInplaceInferer); REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor); REGISTER_OP_CPU_KERNEL( sqrt_grad_grad, ops::SqrtDoubleGradKernel>, ops::SqrtDoubleGradKernel>, ops::SqrtDoubleGradKernel>); /* ========================================================================== */ /* =========================== rsqrt register ============================= */ REGISTER_OPERATOR( rsqrt, ops::ActivationOp, ops::RsqrtOpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, ops::ActFwdInplaceInferer); REGISTER_OPERATOR(rsqrt_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer, ops::RsqrtDoubleGradMaker, ops::RsqrtDoubleGradMaker); REGISTER_OPERATOR( rsqrt_grad_grad, ops::ActivationOpDoubleGrad::FwdDeps()>, ops::ActivationDoubleGradOpInplaceInferer); REGISTER_ACTIVATION_CPU_KERNEL(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor); REGISTER_OP_CPU_KERNEL( rsqrt_grad_grad, ops::RsqrtDoubleGradKernel>, ops::RsqrtDoubleGradKernel>, ops::RsqrtDoubleGradKernel>); /* ========================================================================== */ /* ========================== square register ============================ */ REGISTER_OPERATOR( square, ops::ActivationOp, ops::SquareOpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, ops::ActFwdInplaceInferer); REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer, ops::SquareDoubleGradMaker, ops::SquareDoubleGradMaker); REGISTER_OPERATOR( square_grad_grad, ops::ActivationOpDoubleGrad::FwdDeps()>, ops::ActivationDoubleGradOpInplaceInferer); REGISTER_OP_CPU_KERNEL(square, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>); REGISTER_OP_CPU_KERNEL( square_grad, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>); REGISTER_OP_CPU_KERNEL( square_grad_grad, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>); /* ========================================================================== */ /* ========================== pow register ============================ */ REGISTER_OPERATOR( pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType, ops::PowGradOpMaker, ops::PowGradOpMaker, std::conditional>(), ops::ActFwdInplaceInferer, void>::type); REGISTER_OPERATOR(pow_grad, ops::PowOpGrad, ops::ActivationGradOpInplaceInferer); REGISTER_OP_CPU_KERNEL( pow, ops::PowKernel>, ops::PowKernel>, ops::PowKernel>, ops::PowKernel>); REGISTER_OP_CPU_KERNEL( pow_grad, ops::PowGradKernel>, ops::PowGradKernel>, ops::PowGradKernel>, ops::PowGradKernel>); /* ========================================================================== */ /* ========================== exp register ============================ */ REGISTER_OPERATOR( exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, std::conditional>(), ops::ActFwdInplaceInferer, void>::type); REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer); REGISTER_OP_CPU_KERNEL(exp, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>); REGISTER_OP_CPU_KERNEL( exp_grad, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>); /* ========================================================================== */ /* ========================== expm1 register ============================ */ REGISTER_OPERATOR( expm1, ops::ActivationOp, ops::Expm1OpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, std::conditional>(), ops::ActFwdInplaceInferer, void>::type); REGISTER_OPERATOR(expm1_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer); REGISTER_OP_CPU_KERNEL(expm1, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>); REGISTER_OP_CPU_KERNEL( expm1_grad, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>); /* ========================================================================== */ /* ========================== Log register ==================================*/ REGISTER_OPERATOR( log, ops::ActivationOp, ops::LogOpMaker, ops::ActivationOpInferVarType, ops::ActivationGradOpMaker::FwdDeps(), paddle::framework::OpDesc>, ops::ActivationGradOpMaker::FwdDeps(), paddle::imperative::OpBase>, ops::ActFwdInplaceInferer); REGISTER_OPERATOR(log_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer, ops::LogDoubleGradMaker, ops::LogDoubleGradMaker); REGISTER_OPERATOR( log_grad_grad, ops::ActivationOpDoubleGrad::FwdDeps()>, ops::ActivationDoubleGradOpInplaceInferer); REGISTER_ACTIVATION_CPU_KERNEL(log, Log, LogFunctor, LogGradFunctor); REGISTER_OP_CPU_KERNEL( log_grad_grad, ops::LogDoubleGradKernel>, ops::LogDoubleGradKernel>, ops::LogDoubleGradKernel>); /* ========================================================================== */ /* ========================== register checkpoint ===========================*/ REGISTER_OP_VERSION(leaky_relu) .AddCheckpoint( R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC", paddle::framework::compatible::OpVersionDesc() .BugfixWithBehaviorChanged( "leaky_relu calculate formula before checkponit: out = max(x, " "alpha * x); after checkpoint: out = x if x > 0 else alpha * " "x")); REGISTER_OP_VERSION(hard_shrink) .AddCheckpoint( R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC", paddle::framework::compatible::OpVersionDesc() .BugfixWithBehaviorChanged( "hard_shrink calculate formula before checkponit: out = x * " "((x < -threshold) + (x > threshold)); after checkpoint: out = " "x * (((x < -threshold) + (x > threshold)) > 0)")); REGISTER_OP_VERSION(softplus) .AddCheckpoint( R"ROC(add new attributes [beta] and [threshold], and the formula is changed to " " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical" " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC", paddle::framework::compatible::OpVersionDesc() .NewAttr("beta", "The beta value of the new formula", 1.0f) .NewAttr("threshold", "The threshold value of the new formula", 20.0f)); /* ========================================================================== */