parallel_executor.cc 14.4 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
C
chengduoZH 已提交
16
#include <string>
17
#include <tuple>
Q
qiaolongfei 已提交
18
#include <vector>
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22

P
peizhilin 已提交
23
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
25
#endif
Y
Yang Yang 已提交
26

Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
30
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
32
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
33

Y
Yang Yang 已提交
34
namespace paddle {
Y
Yu Yang 已提交
35 36
namespace framework {

Y
Yu Yang 已提交
37 38 39
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
40
      : places_(places) {}
Y
Yu Yang 已提交
41

42 43 44 45 46 47 48 49 50 51 52
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
Y
Yu Yang 已提交
53 54
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
55
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
56
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
57

P
peizhilin 已提交
58
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
59
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
60
#endif
C
chengduoZH 已提交
61 62
  bool own_local_scope_;
  bool use_cuda_;
63
  bool use_all_reduce_;
Y
Yu Yang 已提交
64 65
};

66 67 68 69
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
70
ParallelExecutor::ParallelExecutor(
71
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
72
    const std::unordered_set<std::string> &params,
73 74
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
75
    Scope *scope, const std::vector<Scope *> &local_scopes,
76
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
77
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
78
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
79
  member_->global_scope_ = scope;
80
  member_->use_cuda_ = exec_strategy.use_cuda_;
81 82 83 84 85 86 87
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
88 89 90
    PADDLE_ENFORCE(exec_strategy.type_ != ExecutionStrategy::kParallelGraph,
                   "You should set build_strategy.reduce with 'AllReduce' for "
                   "ParallelGraph executor type");
91
  }
Y
Yu Yang 已提交
92

93
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
94
  // Create local scopes
95
  if (local_scopes.empty()) {
C
chengduoZH 已提交
96
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
97 98
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
99
      member_->local_scopes_.emplace_back(&scope->NewScope());
100 101
    }
  } else {
C
chengduoZH 已提交
102
    member_->own_local_scope_ = false;
103 104
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
105
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
106
    }
Y
Yu Yang 已提交
107 108
  }

C
chengduoZH 已提交
109
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
110
// Bcast Parameters to all GPUs
P
peizhilin 已提交
111
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduoZH 已提交
112
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
113
    ncclUniqueId *nccl_id = nullptr;
Y
Yancey1989 已提交
114
    bool need_group_call = true;
Y
Yancey1989 已提交
115 116 117 118 119 120 121 122 123 124 125
    if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
      // parallel graph mode should initialize nccl by ncclCommInitRank since
      // it call nccl operator per device per thread.
      if (nccl_id_var == nullptr) {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
        *member_->global_scope_->Var(NCCL_ID_VARNAME)
             ->GetMutable<ncclUniqueId>() = *nccl_id;
      } else {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      }
Y
Yancey1989 已提交
126
      need_group_call = false;
Y
Yancey1989 已提交
127 128 129 130
    } else if (nccl_id_var != nullptr) {  // the other executor type.
      // the distributed training with nccl mode would initialize the nccl id in
      // startup_program.
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
131
    } else {
Y
Yancey1989 已提交
132
      // initlize NCCL by ncclCommInitAll, do not need nccl_id.
C
chengduoZH 已提交
133
    }
Y
Yancey1989 已提交
134

C
chengduoZH 已提交
135
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
Y
Yancey1989 已提交
136
        member_->places_, nccl_id, num_trainers, trainer_id, need_group_call));
C
chengduoZH 已提交
137 138
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
139
#endif
C
chengduoZH 已提交
140 141
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
142
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
143
  }
Y
Yancey1989 已提交
144
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
145

Y
Yancey1989 已提交
146 147 148
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<std::unique_ptr<ir::Graph>> graphs;
P
peizhilin 已提交
149
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163
  if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name, params,
          {member_->local_scopes_[i]}, member_->use_cuda_,
          member_->nccl_ctxs_.get());
      graphs.push_back(std::move(graph));
    }
  } else {
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
        main_program, member_->places_, loss_var_name, params,
        member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
    graphs.push_back(std::move(graph));
  }
S
sneaxiy 已提交
164 165

  auto max_memory_size = GetEagerDeletionThreshold();
Y
Yancey1989 已提交
166 167 168
  // FIXME(Yancey1989): need to fix on parallel graph mode
  if (max_memory_size >= 0 &&
      exec_strategy.type_ != ExecutionStrategy::kParallelGraph) {
S
sneaxiy 已提交
169 170 171 172 173 174 175 176 177
    for (auto &place : member_->places_) {
      if (!platform::is_gpu_place(place)) continue;
      auto gpu_place = boost::get<platform::CUDAPlace>(place);
      if (gcs_[gpu_place.device] == nullptr) {
        ref_cnts_[gpu_place.device].reset(new details::ReferenceCountMap());
        cur_ref_cnts_[gpu_place.device].reset(
            new details::AtomicReferenceCountMap());
        gcs_[gpu_place.device].reset(
            new StreamGarbageCollector<Tensor>(gpu_place, max_memory_size));
S
sneaxiy 已提交
178 179
      }
    }
S
sneaxiy 已提交
180
    if (!gcs_.empty()) {
Y
Yancey1989 已提交
181 182 183 184 185 186
      for (size_t i = 0; i < graphs.size(); ++i) {
        auto ref_cnt_pass =
            ir::PassRegistry::Instance().Get("reference_count_pass");
        ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &ref_cnts_);
        ref_cnt_pass->SetNotOwned(details::kCurReferenceCount, &cur_ref_cnts_);
        ref_cnt_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
Y
Yancey1989 已提交
187 188
        graphs[i] = ref_cnt_pass->Apply(std::move(graphs[i]));
        graphs[i]->SetNotOwned("garbage_collector", &gcs_);
Y
Yancey1989 已提交
189
      }
S
sneaxiy 已提交
190 191
    }
  }
C
chengduoZH 已提交
192
#else
193 194 195
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
                           params, member_->local_scopes_, member_->use_cuda_);
Y
Yancey1989 已提交
196
  graphs.push_back(std::move(graph));
Y
Yu Yang 已提交
197
#endif
X
Xin Pan 已提交
198

199 200
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
201 202 203 204 205 206 207 208 209 210 211
  std::vector<details::VariableInfo> var_infos;
  for (auto &graph : graphs) {
    for (auto &node : graph->Nodes()) {
      if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
        var_infos.emplace_back();
        var_infos.back().name_ = node->Var()->Name();
        var_infos.back().type_ = node->Var()->GetType();
        var_infos.back().persistable_ = node->Var()->Persistable();
      }
    }
  }
Y
Yancey1989 已提交
212

W
Wu Yi 已提交
213 214
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
215
    size_t graph_num = ir::GraphNum(*graphs[0]);
C
chengduo 已提交
216 217 218 219
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
220
          << ir::GraphNum(*graphs[0])
C
chengduo 已提交
221 222 223 224 225
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
226 227
  }

Y
yuyang18 已提交
228 229
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
Y
Yancey1989 已提交
230 231
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs[0])));
Y
Yancey1989 已提交
232 233
  } else if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
234 235
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
Y
yuyang18 已提交
236 237
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
Y
Yancey1989 已提交
238 239
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs[0])));
C
chengduoZH 已提交
240
  }
Y
yuyang18 已提交
241 242

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
243
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
244
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
245 246
}

Y
Yancey1989 已提交
247
void ParallelExecutor::BCastParamsToDevices(
248
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
249
  // the initializing bcast, all vars would be bcast from device(0).
250
  for (auto &var : vars) {
X
Xin Pan 已提交
251
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
252
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
253 254 255 256
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
257
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
258
      VLOG(3) << "one in var not inited, return!";
259 260
      continue;
    }
261 262
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
263
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
264
      std::vector<void *> buffers;
265 266 267 268 269
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
270

X
Xin Pan 已提交
271
        if (i == 0) {
272 273
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
274
          auto local_scope = member_->local_scopes_[i];
275
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
276
          t->Resize(dims);
277
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
278
        }
279
        buffers.push_back(buffer);
280
      }
281

282 283 284 285 286 287
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
288 289
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
290
        }
291
        member_->nccl_ctxs_->WaitAll();
292
      }
C
chengduoZH 已提交
293 294 295
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
296 297
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
298
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
299
        if (i == 0) continue;
Y
Yancey1989 已提交
300

301 302
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
303 304 305 306

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
307 308 309 310 311 312
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
313
      }
Y
Stash  
Yu Yang 已提交
314 315
    }
  }
Y
Yu Yang 已提交
316
}
Y
Yu Yang 已提交
317

Y
Yu Yang 已提交
318 319
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
320
  platform::RecordBlock b(0);
S
sneaxiy 已提交
321 322 323
#ifdef PADDLE_WITH_CUDA
  if (!gcs_.empty()) {
    ResetReferenceCount();
S
sneaxiy 已提交
324 325 326 327 328 329 330
    for (auto &pair : cur_ref_cnts_) {
      auto &name_map = *(pair.second);
      for (auto &fetch_name : fetch_tensors) {
        name_map.erase(fetch_name);
      }
      name_map.erase(fetched_var_name);
    }
S
sneaxiy 已提交
331 332
  }
#endif
S
sneaxiy 已提交
333 334 335
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
336
}
Y
Yu Yang 已提交
337

Y
Yu Yang 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
357 358 359 360 361
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
362 363
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
364
      auto t =
Y
Yu Yang 已提交
365
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
366 367
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
368 369 370 371
    }
  }
}

372
ParallelExecutor::~ParallelExecutor() {
373 374
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
375
  }
S
sneaxiy 已提交
376 377
  // member_ must be destructed before gcs_ since the destructor of
  // ReferenceCountOpHandle use raw pointers of gcs_ inside.
S
sneaxiy 已提交
378
  member_.reset();
379 380
}

Y
Yu Yang 已提交
381
}  // namespace framework
Y
Yang Yang 已提交
382
}  // namespace paddle
S
sneaxiy 已提交
383 384 385
#ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass);
#endif