parallel_executor.cc 20.1 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
qingqing01 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
C
chengduo 已提交
22
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
23

X
clean  
Xin Pan 已提交
24
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
25

Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
31
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
36
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
37
#endif
Y
Yu Yang 已提交
38
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
39 40
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
41
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
42
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
43

Y
Yang Yang 已提交
44
namespace paddle {
Y
Yu Yang 已提交
45 46
namespace framework {

Y
Yu Yang 已提交
47
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
48
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
49
static bool gProfileStarted = false;
Y
Yu Yang 已提交
50
#endif
Y
Yu Yang 已提交
51 52 53
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
54
      : places_(places) {
Y
Yu Yang 已提交
55
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
56 57
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
58
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
59 60 61
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
62
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
63 64 65 66
#endif
      });
    }
  }
Y
Yu Yang 已提交
67

68 69 70 71 72 73 74 75 76 77 78
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
79

S
sneaxiy 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
94
      }
S
sneaxiy 已提交
95
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
96 97 98
    }
  }

D
dzhwinter 已提交
99
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
100 101
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
102
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
103
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
104

P
peizhilin 已提交
105
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
106
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
107
#endif
C
chengduoZH 已提交
108 109
  bool own_local_scope_;
  bool use_cuda_;
110
  bool use_all_reduce_;
111
  size_t nranks_;
S
sneaxiy 已提交
112

S
sneaxiy 已提交
113 114 115 116 117 118
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
119 120
};

S
sneaxiy 已提交
121 122 123 124 125 126 127
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
128
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
129
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
130 131
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
132 133
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
134
      } else {
S
sneaxiy 已提交
135 136
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
137 138
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
139
    } else {
S
sneaxiy 已提交
140
#endif
S
sneaxiy 已提交
141 142 143 144 145 146 147
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
148 149 150 151
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
152
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
153 154
  }

S
sneaxiy 已提交
155
  if (!gcs_.empty()) {
S
sneaxiy 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

182 183 184 185
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yan Xu 已提交
186 187 188 189 190 191 192 193
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
194
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
195
  member_->global_scope_ = scope;
196
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
197
  member_->build_strategy_ = build_strategy;
198 199
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
200
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
201 202 203 204
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
205 206
  }

207
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
208
  // Create local scopes
209
  if (local_scopes.empty()) {
C
chengduoZH 已提交
210
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
211 212
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
213
      member_->local_scopes_.emplace_back(&scope->NewScope());
214 215
    }
  } else {
C
chengduoZH 已提交
216
    member_->own_local_scope_ = false;
217 218
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
219
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
220
    }
Y
Yu Yang 已提交
221 222
  }

X
Xin Pan 已提交
223 224
  std::unique_ptr<ir::Graph> temp_owned_graph(graph);

Y
Yancey1989 已提交
225 226 227
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
X
Xin Pan 已提交
228 229
  build_strategy.enable_parallel_graph_ = EnableParallelGraphExecution(
      *temp_owned_graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
230 231 232 233
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
234

C
chengduoZH 已提交
235
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
236
// Bcast Parameters to all GPUs
P
peizhilin 已提交
237
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
238 239 240
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
241
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
242
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
243
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
244
    }
X
Xin Pan 已提交
245
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
246 247 248 249
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
250
      }
C
chengduoZH 已提交
251
    }
Y
Yancey1989 已提交
252

C
chengduoZH 已提交
253
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
254 255
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
Q
qingqing01 已提交
256

W
Wu Yi 已提交
257 258 259
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
260
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
261 262 263 264 265 266 267
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    std::unique_ptr<platform::NCCLContextMap> dev_nccl_ctxs;
    if (nccl_id == nullptr) {
      dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_));
    }
Q
qingqing01 已提交
268 269 270 271 272
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
W
Wu Yi 已提交
273 274 275 276 277 278 279
      if (nccl_id != nullptr) {
        auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      } else {
        auto &nccl_ctx = dev_nccl_ctxs->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      }
Q
qingqing01 已提交
280
    }
C
chengduoZH 已提交
281 282
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
283
#endif
C
chengduoZH 已提交
284
  }
Y
Yan Xu 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };

  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
300
  }
Y
Yan Xu 已提交
301

X
Xin Pan 已提交
302
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
303

X
Xin Pan 已提交
304 305
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
P
peizhilin 已提交
306
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
307

X
Xin Pan 已提交
308 309 310 311
  temp_owned_graph = build_strategy.Apply(
      std::move(temp_owned_graph), member_->places_, loss_var_name,
      member_->local_scopes_, member_->nranks_, member_->use_cuda_,
      member_->nccl_ctxs_.get());
X
Xin Pan 已提交
312
#else
X
Xin Pan 已提交
313 314
  temp_owned_graph = build_strategy.Apply(
      std::move(temp_owned_graph), member_->places_, loss_var_name,
X
Xin Pan 已提交
315
      member_->local_scopes_, member_->nranks_, member_->use_cuda_);
X
Xin Pan 已提交
316

Y
Yu Yang 已提交
317
#endif
Y
Yancey1989 已提交
318
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
319 320
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
321
  if (max_memory_size >= 0) {
X
Xin Pan 已提交
322 323 324 325 326 327
    graph = member_
                ->PrepareGCAndRefCnts(std::move(temp_owned_graph),
                                      static_cast<size_t>(max_memory_size))
                .release();
  } else {
    graph = temp_owned_graph.release();
Y
Yancey1989 已提交
328 329
  }

330 331
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
332
  std::vector<details::VariableInfo> var_infos;
Y
Yancey1989 已提交
333 334 335 336 337 338
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
339 340
    }
  }
Y
Yancey1989 已提交
341

W
Wu Yi 已提交
342 343
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
344
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
345 346 347 348
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
349
          << ir::GraphNum(*graph)
C
chengduo 已提交
350 351 352 353 354
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
355 356
  }

Y
Yancey1989 已提交
357
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
358
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
359 360
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
361
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
362
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
363 364 365 366
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
X
Xin Pan 已提交
367 368 369 370 371 372 373
  } else {
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
374
    }
C
chengduoZH 已提交
375
  }
Y
yuyang18 已提交
376 377

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
378
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
379
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
380 381
}

Y
Yancey1989 已提交
382
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
383
    const std::vector<std::string> &vars, int trainer_id) const {
X
Xin Pan 已提交
384
  // the initializing bcast, all vars would be bcast from device(0).
385
  for (auto &var : vars) {
X
Xin Pan 已提交
386
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
387
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
388 389 390 391
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
392
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
393
      VLOG(3) << "one in var not inited, return!";
394 395
      continue;
    }
396 397
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
398
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
399
      std::vector<void *> buffers;
C
chengduo 已提交
400
      buffers.reserve(member_->places_.size());
401 402 403 404 405
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
406

Y
Yan Xu 已提交
407
        if (i == 0 && trainer_id == 0) {
408 409
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
410
          auto local_scope = member_->local_scopes_[i];
411
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
412
          t->Resize(dims);
413
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
414
        }
415
        buffers.push_back(buffer);
416
      }
417

418 419 420 421 422 423
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
424 425
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
426
        }
427
        member_->nccl_ctxs_->WaitAll();
428
      }
C
chengduoZH 已提交
429 430 431
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
432 433
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
434
      for (size_t i = 1; i < member_->places_.size(); ++i) {
435 436
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
437 438 439 440

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
441 442 443 444 445 446
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
447
      }
Y
Stash  
Yu Yang 已提交
448 449
    }
  }
Y
Yu Yang 已提交
450
}
Y
Yu Yang 已提交
451

Y
Yu Yang 已提交
452 453
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
454 455 456
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
457 458
  }
#endif
Y
Yu Yang 已提交
459

X
Xin Pan 已提交
460
  platform::RecordBlock b(0);
S
sneaxiy 已提交
461 462
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
463
  }
S
sneaxiy 已提交
464 465 466
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
467
}
Y
Yu Yang 已提交
468

Y
Yu Yang 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
488 489 490 491 492
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
493 494
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
495
      auto t =
Y
Yu Yang 已提交
496
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
497 498
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
499 500 501 502
    }
  }
}

X
Xin Pan 已提交
503 504 505 506 507 508 509
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

X
Xin Pan 已提交
510 511 512
bool ParallelExecutor::EnableParallelGraphExecution(
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
513
  if (!FLAGS_enable_parallel_graph) return false;
514

Y
Yancey1989 已提交
515
  bool enable_parallel_graph = true;
516

X
Xin Pan 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
530 531 532
    }
  }

Y
Yancey1989 已提交
533
  if (!member_->use_all_reduce_ || !member_->use_cuda_)
534

Y
Yancey1989 已提交
535 536 537
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
538
  return enable_parallel_graph;
539 540
}

Y
Yu Yang 已提交
541
}  // namespace framework
Y
Yang Yang 已提交
542
}  // namespace paddle
S
sneaxiy 已提交
543

S
sneaxiy 已提交
544
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
545
USE_PASS(eager_deletion_pass);