trainer.py 45.4 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import os
T
tangwei12 已提交
17 18 19
import errno
import shutil
import time
20

Y
Yu Yang 已提交
21
import core
22

Y
Yu Yang 已提交
23
import data_feeder
24 25
import executor
import framework
J
Jeff Wang 已提交
26
import io
Y
Yu Yang 已提交
27 28
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
29
import parallel_executor
Y
Yancey 已提交
30
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
31

H
Helin Wang 已提交
32
__all__ = [
33 34
    'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
    'EndStepEvent', 'CheckpointConfig'
H
Helin Wang 已提交
35 36 37
]


Y
Yu Yang 已提交
38
class BeginEpochEvent(object):
Y
yuyang18 已提交
39 40 41 42 43 44 45
    """
    The begin of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
    """

Y
Yu Yang 已提交
46 47 48 49 50
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
Y
yuyang18 已提交
51 52 53 54 55 56 57
    """
    The end of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
    """

Y
Yu Yang 已提交
58 59
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
60

Y
Yu Yang 已提交
61 62

class BeginStepEvent(object):
Y
yuyang18 已提交
63 64 65 66 67 68 69 70
    """
    The begin of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
        step_id(int): The current step ID.
    """

Y
Yu Yang 已提交
71 72 73
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
74
        self.fetch_metrics = True
Y
yuyang18 已提交
75
        """
T
bug fix  
tangwei12 已提交
76
        If fetch_metrics is true, the metrics will be fetched at the
Y
yuyang18 已提交
77 78
        EndStepEvent. Default is True.
        """
Y
Yu Yang 已提交
79 80 81


class EndStepEvent(object):
Y
yuyang18 已提交
82 83 84 85 86 87 88
    """
    The end of a training step.

    Args:
        epoch_id(int): The current epoch ID.
        step_id(int): The current step ID.
        metrics(list): A list of fetched tensor. The order of this list is same
Y
yuyang18 已提交
89
            as the :code:`train_func` returns.
Y
yuyang18 已提交
90 91
    """

Y
yuyang18 已提交
92
    def __init__(self, epoch_id, step_id, metrics):
Y
Yu Yang 已提交
93 94
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
95
        self.metrics = metrics
H
Helin Wang 已提交
96 97


98
class CheckpointConfig(object):
Y
yuyang18 已提交
99
    """
T
tangwei12 已提交
100
    Parameter object for :code:`save_checkpoint` and
Y
yuyang18 已提交
101 102 103 104
    :code:`fluid.Trainer`. Used to configuration how to save checkpoint.

    Args:
        checkpoint_dir(str): Directory path to save check point. Default is the
Y
yuyang18 已提交
105
            current directory.
Y
yuyang18 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119

        max_num_checkpoints(int): The max number of local check points.
        epoch_interval(int): Every number of epoch to save check point.
        step_interval(int): Every number of step to save check point.

    Examples:
        >>> config = fluid.CheckpointConfig("./checkpoints")
        >>> trainer = fluid.Trainer(train_func=train_program,
        >>>                         place=place,
        >>>                         optimizer_func=optimizer_func,
        >>>                         checkpoint_config=config)
        >>> trainer.train(...)
    """

120 121 122
    def __init__(self,
                 checkpoint_dir=None,
                 max_num_checkpoints=3,
T
tangwei12 已提交
123 124 125
                 epoch_interval=1,
                 step_interval=10):

126 127
        assert epoch_interval >= 1
        assert step_interval >= 1
128

T
tangwei12 已提交
129 130
        self.checkpoint_dir = checkpoint_dir \
            if checkpoint_dir is not None else os.getcwd()
131 132 133
        self.max_num_checkpoints = max_num_checkpoints
        self.epoch_interval = epoch_interval
        self.step_interval = step_interval
134 135
        self.epoch_id = 0
        self.step_id = 0
T
tangwei12 已提交
136
        self.load_serial = None
T
tangwei12 已提交
137

138

Q
Qiao Longfei 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
165
class Trainer(object):
Y
Yu Yang 已提交
166
    """
Y
yuyang18 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    A trainer wraps MultiGPU/MultiNode training loops and can be used to train a
    simple neural network easily.

    This API takes a :code:`train_func`. A :code:`train_func` is a function that
    return loss as it first return value. The reset value can be fetched by
    EndStepEvent.metrics

    This API also takes a :code:`optimizer_func` that will return an optimizer
    instance.

    For example, to train a MLP for MNIST dataset, the sample program is

    >>> import paddle.fluid as fluid
    >>>
    >>> def mlp(image, layer_sizes=[200, 100], activation="relu", num_classes=10):
    >>>     hidden = image
    >>>     for layer_size in layer_sizes:
    >>>         hidden = fluid.layers.fc(input=hidden, size=layer_size, act=activation)
    >>>     return fluid.layers.fc(input=hidden, size=num_classes, act="softmax")
    >>>
    >>> def train_mnist_mlp():
    >>>     img = fluid.layers.data(name='image', shape=[784])
    >>>     label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    >>>     prediction = mlp(img)
    >>>     return fluid.layers.mean(fluid.layers.cross_entropy(prediction, label))
    >>>
    >>> def optimizer():
    >>>     return fluid.optimizer.Adam()
    >>>
    >>> trainer = Trainer(train_func=train_mnist_mlp,
    >>>                   optimizer_func=optimizer,
    >>>                   place=fluid.CUDAPlace(0),
    >>>                   parallel=True)
    >>>
    >>> def train_callback(event):
    >>>     if isinstance(event, fluid.EndStepEvent):
    >>>         print "Epoch ID", event.epoch, "Step ID",\
    >>>             event.step, "AvgLoss", event.metrics[0]
    >>>     elif isinstance(event, fluid.EndEpochEvent):
    >>>         trainer.save_params("./model_{0}".format(event.epoch))
    >>>
    >>> trainer.train(num_epochs=100, event_handler=train_callback)

    For more example, please see :ref:`api_guide_high_level_api`.

Y
Yu Yang 已提交
212 213

    Args:
Y
yuyang18 已提交
214 215
        train_func(callable): A function which will return loss. The loss must be
            a scalar tensor.
216
        optimizer_func(callable): A function that returns an Optimizer object.
Y
yuyang18 已提交
217 218 219 220 221 222
        place(CUDAPlace|CPUPlace): The device place of this trainer. If
            :code:`parallel=True,` all CUDA Places will be used if :code:`place`
            is a :code:`CUDAPlace`.
        parallel(bool): True if use multiple devices.
        checkpoint_config(CheckpointConfig): Configuration about how to save
            checkpoints.
Y
Yu Yang 已提交
223 224
    """

Q
Qiao Longfei 已提交
225 226
    def __init__(self,
                 train_func,
227
                 optimizer_func,
T
tangwei12 已提交
228
                 param_path=None,
Y
yuyang18 已提交
229
                 place=None,
230 231
                 parallel=False,
                 checkpoint_config=None):
232
        self.__stop = False
Y
yuyang18 已提交
233
        self.parallel = parallel
Q
Qiao Longfei 已提交
234

235 236
        # config for checkpoint
        # only chief worker will save variables
T
tangwei12 已提交
237
        self.trainer_id = 0
238 239 240
        self.pserver_id = None
        self.pserver_endpoints = None
        self.lookup_table_name = None
T
tangwei12 已提交
241 242 243
        self.checkpoint_cfg = checkpoint_config
        if self.checkpoint_cfg:
            assert isinstance(self.checkpoint_cfg, CheckpointConfig)
T
tangwei12 已提交
244
            serial = _get_latest_checkpoint_serial(
T
tangwei12 已提交
245 246
                self.checkpoint_cfg.checkpoint_dir)
            self.checkpoint_cfg.load_serial = serial if serial >= 0 else None
247

H
Helin Wang 已提交
248
        self.scope = core.Scope()
Y
Yu Yang 已提交
249

Y
yuyang18 已提交
250 251 252 253
        # 1. we need to generate a framework.Program by calling
        # program_func. Reference: fluid.program_guard in
        # test_word2vec.py

Y
Yu Yang 已提交
254 255 256 257
        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
258
            program_func_outs = train_func()
Y
yuyang18 已提交
259
            self.train_func_outputs = program_func_outs if isinstance(
F
fengjiayi 已提交
260
                program_func_outs, list) else [program_func_outs]
261
            self.test_program = self.train_program.clone(for_test=True)
262

263
            # The first element of program_func_outs is loss.
264 265 266
            loss = self.train_func_outputs[0]

            optimizer = optimizer_func()
Y
Yu Yang 已提交
267 268 269
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
270
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
271

Q
Qiao Longfei 已提交
272
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
273

Q
Qiao Longfei 已提交
274
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
275

H
Helin Wang 已提交
276 277
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
278
        # Run startup program
279 280 281
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
282

T
bug fix  
tangwei12 已提交
283
        if self.checkpoint_cfg and self.checkpoint_cfg.load_serial is not None:
T
tangwei12 已提交
284
            self._load_checkpoint()
T
tangwei12 已提交
285 286

        if param_path and os.path.isdir(param_path):
T
tangwei12 已提交
287
            # load params from param_path into scope
288 289 290 291 292 293
            _load_persistable_vars(exe, param_path, self.startup_program, False,
                                   [self.lookup_table_name]
                                   if self.lookup_table_name else [])
            if self.lookup_table_name and self.pserver_id:
                _load_lookup_table_vars(exe, param_path, self.startup_program,
                                        self.pserver_id, self.lookup_table_name)
T
tangwei12 已提交
294

295 296 297 298 299 300 301 302 303 304 305 306
    def _transpile_nccl2_dist(self):
        # PADDLE_TRAINER_IPS
        if "PADDLE_TRAINER_IPS" not in os.environ:
            self.nccl_id_var = None
        else:
            self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
            port = os.getenv("PADDLE_PSERVER_PORT")
            worker_ips = os.getenv("PADDLE_TRAINER_IPS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            self.num_trainers = len(worker_endpoints)
Y
yi.wu 已提交
307
            current_endpoint = os.getenv("PADDLE_CURRENT_IP") + ":" + port
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            worker_endpoints.remove(current_endpoint)
            # TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
            # in ParallelExecutor to start
            # distributed training using NCCL2
            self.nccl_id_var = self.startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            self.startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": self.nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": self.trainer_id
                })

Q
Qiao Longfei 已提交
324
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
325 326 327 328
        self._transpile_nccl2_dist()
        if self.nccl_id_var != None:
            return

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
T
bug fix  
tangwei12 已提交
348
        self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
T
tangwei12 已提交
349

350 351 352 353 354
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
T
bug fix  
tangwei12 已提交
355
                self.trainer_id, pservers=pserver_endpoints, trainers=trainers)
356
            if training_role == "PSERVER":
357 358 359
                self.pserver_id = eplist.index(current_endpoint)
                self.pserver_endpoints = pserver_endpoints
                self.lookup_table_name = t.table_name if t.has_distributed_lookup_table else None
T
tangwei12 已提交
360

361 362 363 364 365 366 367 368 369
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
370

371 372 373 374 375 376
    def stop(self):
        """
        stop training
        """
        self.__stop = True

Y
yuyang18 已提交
377
    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
Y
Yu Yang 已提交
378
        """
Y
yuyang18 已提交
379
        Start the train loop to train the model.
Y
Yu Yang 已提交
380 381

        Args:
Y
yuyang18 已提交
382 383 384
            num_epochs(int): The number of epoch. An epoch will process all data in reader
            event_handler(callable): The event handler. A function with type (ev:Event)->void
            reader(callable): A reader creator object. See also
Y
yuyang18 已提交
385
                :ref:`api_guide_python_reader` .
Y
yuyang18 已提交
386
            feed_order(list): Feeding order of reader. None will following the defining
Y
Yu Yang 已提交
387 388 389
                order in program

        Returns:
Y
yuyang18 已提交
390
            None
Y
Yu Yang 已提交
391
        """
392 393 394 395 396 397
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
Y
yuyang18 已提交
398 399 400 401 402 403
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)
H
Helin Wang 已提交
404

405
    def test(self, reader, feed_order):
F
fengjiayi 已提交
406 407 408 409
        """
        Test the model on given test data

        Args:
Y
yuyang18 已提交
410 411 412
            reader(callable): The reader that yields test data.
            feed_order(list): Feeding order of reader. None will following the
                defining order in program
F
fengjiayi 已提交
413 414
        """

Y
yuyang18 已提交
415 416
        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)
Y
Yu Yang 已提交
417

H
Helin Wang 已提交
418
    def save_params(self, param_path):
Y
yuyang18 已提交
419
        """
Y
yuyang18 已提交
420
        Save all parameters into :code:`param_path`.
421 422 423 424 425
        Only No.0 trainer will save dense params.
        In standalone PaddlePaddle, the only existing trainer will save dense params.
        In distributed PaddlePaddle, the No.0 trainer will save dense params,
        If there have lookup table need to save, No.0 trainer will broadcast notification
        to all Parameter Servers to save it on Parameter Servers independent.
Y
yuyang18 已提交
426

Y
yuyang18 已提交
427
        Args:
Y
yuyang18 已提交
428
            param_path(str): The path to save parameters.
Y
yuyang18 已提交
429 430 431 432

        Returns:
            None
        """
433 434 435 436

        if self.trainer_id != 0:
            return

437
        with self._prog_and_scope_guard():
438
            # save params on trainer
439 440
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
441 442 443 444 445
            # save params on pserver
            if self.lookup_table_name:
                _save_pserver_vars_by_notify(exe, param_path,
                                             self.lookup_table_name,
                                             self.pserver_endpoints)
Y
Yu Yang 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
469
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
470 471
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
472
            exe = executor.Executor(self.place)
Y
yuyang18 已提交
473 474 475 476
            reader = feeder.decorate_reader(reader, multi_devices=False)
            self._train_by_any_executor(event_handler, exe, num_epochs, reader)

    def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
T
tangwei12 已提交
477
        if self.checkpoint_cfg:
T
bug fix  
tangwei12 已提交
478 479
            epochs = [
                epoch_id for epoch_id in range(num_epochs)
T
tangwei12 已提交
480
                if epoch_id >= self.checkpoint_cfg.epoch_id
T
bug fix  
tangwei12 已提交
481 482 483 484
            ]
        else:
            epochs = [epoch_id for epoch_id in range(num_epochs)]

T
tangwei12 已提交
485
        for epoch_id in epochs:
Y
yuyang18 已提交
486 487
            event_handler(BeginEpochEvent(epoch_id))
            for step_id, data in enumerate(reader()):
488
                if self.__stop:
T
bug fix  
tangwei12 已提交
489 490
                    if self.checkpoint_cfg:
                        self._clean_checkpoint()
491
                    return
T
tangwei12 已提交
492

T
bug fix  
tangwei12 已提交
493 494 495 496
                if self.checkpoint_cfg and \
                    self.checkpoint_cfg.load_serial is not None and \
                    self.checkpoint_cfg.step_id >= step_id and \
                    self.checkpoint_cfg.epoch_id == epoch_id:
T
tangwei12 已提交
497 498
                    continue

Y
yuyang18 已提交
499 500 501 502 503 504 505 506 507 508
                begin_event = BeginStepEvent(epoch_id, step_id)
                event_handler(begin_event)
                if begin_event.fetch_metrics:
                    metrics = exe.run(feed=data,
                                      fetch_list=[
                                          var.name
                                          for var in self.train_func_outputs
                                      ])
                else:
                    metrics = exe.run(feed=data, fetch_list=[])
T
tangwei12 已提交
509

T
tangwei12 已提交
510 511
                if self.checkpoint_cfg:
                    self._save_checkpoint(epoch_id, step_id)
T
tangwei12 已提交
512
                event_handler(EndStepEvent(epoch_id, step_id, metrics))
Y
yuyang18 已提交
513
            event_handler(EndEpochEvent(epoch_id))
T
tangwei12 已提交
514 515
        if self.checkpoint_cfg:
            self._clean_checkpoint()
F
fengjiayi 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

Y
yuyang18 已提交
534 535 536 537 538 539 540 541
    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
542
            self._train_by_any_executor(event_handler, pe, num_epochs, reader)
Y
yuyang18 已提交
543 544 545 546 547 548 549 550 551 552 553

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

T
tangwei12 已提交
554
    def _clean_checkpoint(self):
T
tangwei12 已提交
555
        assert self.checkpoint_cfg
T
tangwei12 已提交
556
        clean_checkpoint(checkpoint_dir=self.checkpoint_cfg.checkpoint_dir)
T
tangwei12 已提交
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    def _get_checkpoint_load_args(self):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
        """
        return ["epoch_id", "step_id"]

    def _get_checkpoint_save_args(self, epoch_id, step_id):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
        """
        trainer_args = {}
        trainer_args["epoch_id"] = epoch_id
        trainer_args["step_id"] = step_id
        return trainer_args

T
tangwei12 已提交
573
    def _save_checkpoint(self, epoch_id, step_id):
T
tangwei12 已提交
574
        assert self.checkpoint_cfg
T
tangwei12 已提交
575

T
tangwei12 已提交
576 577
        if epoch_id % self.checkpoint_cfg.epoch_interval == 0 \
            and step_id % self.checkpoint_cfg.step_interval == 0:
T
bug fix  
tangwei12 已提交
578

T
tangwei12 已提交
579
            exe = executor.Executor(self.place)
T
tangwei12 已提交
580
            save_checkpoint(
T
tangwei12 已提交
581
                executor=exe,
T
tangwei12 已提交
582
                checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
T
tangwei12 已提交
583
                main_program=self.train_program,
584 585 586 587 588
                trainer_id=self.trainer_id,
                save_trainer_args=self._get_checkpoint_save_args(epoch_id,
                                                                 step_id),
                save_lookup_table=self.lookup_table_name,
                pserver_endpoints=self.pserver_endpoints,
T
tangwei12 已提交
589
                max_num_checkpoints=self.checkpoint_cfg.max_num_checkpoints)
T
tangwei12 已提交
590

T
tangwei12 已提交
591 592 593 594
    def _load_checkpoint(self):
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)

T
bug fix  
tangwei12 已提交
595 596 597 598
            checkpoint_dir = _get_serial_dir(self.checkpoint_cfg.checkpoint_dir,
                                             self.checkpoint_cfg.load_serial)

            # Trainer Load
599
            if self.pserver_id is None:
T
bug fix  
tangwei12 已提交
600 601
                # load model
                load_checkpoint(
T
tangwei12 已提交
602
                    executor=exe,
T
bug fix  
tangwei12 已提交
603
                    checkpoint_dir=checkpoint_dir,
T
tangwei12 已提交
604 605 606
                    main_program=self.startup_program,
                    role_id=self.trainer_id,
                    is_trainer=True,
T
bug fix  
tangwei12 已提交
607
                    load_models=True)
T
tangwei12 已提交
608

T
bug fix  
tangwei12 已提交
609 610 611 612 613 614 615 616 617 618 619
                # load trainer_args
                trainer_args = self._get_checkpoint_load_args()
                trainer_args_ret = load_checkpoint(
                    executor=exe,
                    checkpoint_dir=checkpoint_dir,
                    main_program=self.startup_program,
                    role_id=self.trainer_id,
                    is_trainer=True,
                    load_trainer_args=trainer_args)

                if len(trainer_args_ret) != 2:
T
tangwei12 已提交
620 621 622
                    raise ValueError(
                        "the return trainer_args length do not equal _get_checkpoint_load_args"
                    )
T
bug fix  
tangwei12 已提交
623 624 625
                self.checkpoint_cfg.epoch_id = int(trainer_args_ret[0])
                self.checkpoint_cfg.step_id = int(trainer_args_ret[1])

T
bug fix  
tangwei12 已提交
626
            # Pserver Load
T
tangwei12 已提交
627
            else:
628 629 630 631 632 633 634 635 636 637
                # load model
                load_checkpoint(
                    executor=exe,
                    checkpoint_dir=checkpoint_dir,
                    main_program=self.startup_program,
                    role_id=self.pserver_id,
                    is_trainer=False,
                    load_models=True,
                    load_lookup_table=self.lookup_table_name)

T
bug fix  
tangwei12 已提交
638
                # load lookup table
639
                if self.lookup_table_name:
T
tangwei12 已提交
640
                    load_checkpoint(
T
tangwei12 已提交
641
                        executor=exe,
T
bug fix  
tangwei12 已提交
642
                        checkpoint_dir=checkpoint_dir,
T
tangwei12 已提交
643
                        main_program=self.startup_program,
644
                        role_id=self.pserver_id,
T
tangwei12 已提交
645
                        is_trainer=False,
646
                        load_lookup_table=self.lookup_table_name)
T
tangwei12 已提交
647

F
fengjiayi 已提交
648 649 650 651 652

def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

653
    if isinstance(feed_order, list):
F
fengjiayi 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list
T
tangwei12 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682


# move Checkpoint APIs from io.py to trainer.py, make all of them are private.
SUCCESS_MARK_FILENAME = "_SUCCESS"
CHECKPOINT_PREFIX = "checkpoint"
MODEL_DIR = "__model__"
LOOKUP_TABLE_DIR = "__lookup_table__"
TRAINER_PREFIX = "trainer"
CHECKPOINT_SEPARATOR = "_"


def save_checkpoint(executor,
                    checkpoint_dir,
T
bug fix  
tangwei12 已提交
683 684 685
                    main_program=None,
                    trainer_id=0,
                    save_trainer_args=None,
T
bug fix  
tangwei12 已提交
686
                    save_lookup_table=None,
T
bug fix  
tangwei12 已提交
687 688
                    pserver_endpoints=None,
                    max_num_checkpoints=3):
T
tangwei12 已提交
689 690
    """
    This function filters out all checkpoint variables from the give
T
bug fix  
tangwei12 已提交
691
    main_program and then saves these variables to the `checkpoint_dir`
T
tangwei12 已提交
692 693 694
    directory.

    In the training precess, we generally save a checkpoint in each
T
bug fix  
tangwei12 已提交
695 696 697 698
    iteration. So there might be a lot of checkpoints in the
    `checkpoint_dir`. To avoid them taking too much disk space, the
    `max_num_checkpoints` are introduced to limit the total number of
    checkpoints. If the number of existing checkpints is greater than
T
tangwei12 已提交
699 700 701 702 703 704 705 706 707 708 709
    the `max_num_checkpoints`, oldest ones will be scroll deleted.

    A variable is a checkpoint variable and will be saved if it meets
    all following conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for save checkpoint.
        checkpoint_dir(str): The folder where to save checkpoints.
T
bug fix  
tangwei12 已提交
710
        trainer_id(int): currect trainer id, if id is equal to 0, the trainer
T
tangwei12 已提交
711
            is chief.
T
bug fix  
tangwei12 已提交
712
        trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
T
tangwei12 已提交
713 714 715 716
            and 'step_id'.
            Defaut: None
        main_program(Program): The program whose checkpoint variables will
            be saved.
T
bug fix  
tangwei12 已提交
717
        max_num_checkpoints(int): The max number of total number of existing
T
tangwei12 已提交
718 719
            checkpoints.
            Default: 3
T
bug fix  
tangwei12 已提交
720
        save_lookup_table(string|None): the lookup table name, when use distribute
T
tangwei12 已提交
721
            lookup table, we can get lookup table name by DistributeTranspiler.
T
bug fix  
tangwei12 已提交
722 723 724
            table_name
        pserver_endpoints(list|None): the parameter server ip:port list.
            when use distribute lookup table, we can get pserver_endpoints by
T
tangwei12 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
            distribute arguments.

    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        AssertionError: If `trainer_args` is not a dict.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            trainer_args = {"epoch_id": 200,
                            "step_id": 20} # just an example
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            save_checkpoint(executor=exe,
                                     checkpoint_dir=path,
                                     trainer_id=0,
                                     trainer_args=trainer_args,
                                     main_program=prog,
                                     max_num_checkpoints=3,
T
bug fix  
tangwei12 已提交
751
                                     save_lookup_table=table_name,
T
tangwei12 已提交
752 753 754 755 756 757 758
                                     pserver_endpoints = ps_endpoints)
    """
    if checkpoint_dir is None:
        raise ValueError("'checkpoint_dir' should not be None")

    _make_chekcpoint_dirs(checkpoint_dir)
    serial = _get_latest_checkpoint_serial(checkpoint_dir) + 1
T
bug fix  
tangwei12 已提交
759
    cur_dir = _get_serial_dir(checkpoint_dir, serial, True)
T
tangwei12 已提交
760

T
bug fix  
tangwei12 已提交
761 762 763 764
    is_chief = trainer_id == 0

    if save_trainer_args is not None:
        _save_trainer_args(cur_dir, trainer_id, save_trainer_args)
T
tangwei12 已提交
765 766

    if is_chief:
T
bug fix  
tangwei12 已提交
767 768
        if main_program is None:
            raise ValueError('main_program should not be None.')
T
bug fix  
tangwei12 已提交
769
        _save_persistable_vars(executor, cur_dir, main_program)
T
tangwei12 已提交
770

T
bug fix  
tangwei12 已提交
771 772
    if is_chief and save_lookup_table and pserver_endpoints:
        _save_pserver_vars_by_notify(executor, cur_dir, save_lookup_table,
T
tangwei12 已提交
773 774 775 776 777 778 779
                                     pserver_endpoints)

    _scroll_delete(checkpoint_dir, max_num_checkpoints)


def load_checkpoint(executor,
                    checkpoint_dir,
T
bug fix  
tangwei12 已提交
780
                    main_program=None,
T
tangwei12 已提交
781 782
                    role_id=0,
                    is_trainer=True,
T
bug fix  
tangwei12 已提交
783
                    load_models=False,
T
tangwei12 已提交
784 785 786 787 788 789 790 791
                    load_trainer_args=None,
                    load_lookup_table=None):
    """
    This function filters out all checkpoint variables from the give
    main_program and then try to load these variables from the
    `checkpoint_dir` directory.

    In the training precess, we generally save a checkpoint in each
T
bug fix  
tangwei12 已提交
792 793
    iteration. So there are more than one checkpoint in the
    `checkpoint_dir` (each checkpoint has its own sub folder), use
T
tangwei12 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806
    `serial` to specify which serial of checkpoint you would like to
    load.

    A variable is a checkpoint variable and will be loaded if it meets
    all following conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for loading checkpoint.
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
T
bug fix  
tangwei12 已提交
807
        main_program(Program|None): The program whose checkpoint variables will
T
tangwei12 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
                               be loaded.
        role_id(int):  the trainer id or the parameter server id.
        is_trainer(bool): trainer is True and parameter server is False.
        load_trainer_args(list|None): list about load trainer args.
        load_lookup_table(str|None): the lookup table name

    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        ValueError: If `main_program` is None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            load_checkpoint(executor=exe, checkpoint_dir=path,
                    serial=9, main_program=prog)

            # In this example, `load_checkpoint` function
            # will first filters out all checkpoint variables in the default
            # main program, and then try to load these variables form the
            # folder "./checkpoints/checkpoint_9/__model__".
    """

    if checkpoint_dir is None:
        raise ValueError("'checkpoint_dir' should not be None")

T
bug fix  
tangwei12 已提交
839 840 841 842
    # trainer load
    if is_trainer:
        if load_models:
            _load_persistable_vars(executor, checkpoint_dir, main_program, True)
843

T
bug fix  
tangwei12 已提交
844 845 846 847 848 849
        if load_trainer_args:
            trainer_args_ret = _load_trainer_args(checkpoint_dir, role_id,
                                                  load_trainer_args)
            return trainer_args_ret
    # pserver load
    else:
850 851 852 853 854 855 856 857
        if load_models:
            if load_lookup_table:
                _load_persistable_vars(executor, checkpoint_dir, main_program,
                                       True, [load_lookup_table])
            else:
                _load_persistable_vars(executor, checkpoint_dir, main_program,
                                       True)

T
bug fix  
tangwei12 已提交
858 859 860
        if load_lookup_table:
            _load_lookup_table_vars(executor, checkpoint_dir, main_program,
                                    role_id, load_lookup_table)
T
tangwei12 已提交
861 862 863 864


def clean_checkpoint(checkpoint_dir, delete_dir=False):
    """
T
bug fix  
tangwei12 已提交
865
    clean the checkpoint dir, when the train exits normally,
T
tangwei12 已提交
866
    the trainer will call clean_checkpoint to delete checkpoint directory saved before.
T
bug fix  
tangwei12 已提交
867
    delete_dir only works when the directory is empty, otherwise, OSError is raised.
T
tangwei12 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880

    : param checkpoint_dir
    : param delete_dir
    """

    if checkpoint_dir is None:
        raise ValueError("'checkpoint_dir' should not be None")
    _scroll_delete(checkpoint_dir, max_num_checkpoints=0)

    if delete_dir and not os.listdir(checkpoint_dir):
        os.rmdir(checkpoint_dir)


881 882 883 884 885
def _load_persistable_vars(executor,
                           dirname,
                           program,
                           has_model_dir=False,
                           except_vars=None):
T
tangwei12 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
    """
    This function filters out all checkpoint variables from the give
    program and then trys to load these variables from the given directory.

    A variable is a checkpoint variable if it meets all following
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be loaded.
        has_model_dir(bool): if True, the function loads variables
                             from a sub directory named '__model__'.
                             Default: False

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
T
bug fix  
tangwei12 已提交
914
            _load_persistable_vars(executor=exe,
T
tangwei12 已提交
915 916
                    dirname=param_path, program=prog, has_model_dir=True)

T
bug fix  
tangwei12 已提交
917
            # In this example, `_load_persistable_vars` function
T
tangwei12 已提交
918 919 920 921 922 923 924 925 926 927 928 929
            # will first filters out all checkpoint variables in the default
            # main program, and then trys to load these variables form the
            # folder "./my_paddle_model/__model__".
    """

    if has_model_dir:
        dirname = _get_model_dir(dirname)

    io.load_vars(
        executor,
        dirname=dirname,
        main_program=program,
930
        predicate=_is_checkpoint_var(except_vars),
T
tangwei12 已提交
931 932 933 934 935
        filename=None)


def _load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
    """
T
bug fix  
tangwei12 已提交
936
    The parameter server will load lookup table's local file in
T
tangwei12 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
    selectedrows variable.

    Args:
        executor(Executor): The executor to run for loading persistable variables
        dirname(str): The directory path
        main_program(Program): Find the variable named table_name in main_program
        pserver_id(int): the serial number in pserver_endpoints list
        table_name(str): lookup table name

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            dirname = "./checkpoints/checkpoint_9/"
            prog = fluid.default_main_program()
            pserver_id = 1
            table_name = "share_w"
            _load_lookup_table_vars(executor=exe,
                    dirname=dirname, program=prog, pserver_id=pserver_id,
                    table_name=table_name)
    """

    for var in program.list_vars():
        if var.name == table_name:
            lookup_table_var = var
            break

    assert lookup_table_var is not None

    lookup_table_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
    table_file = table_name + CHECKPOINT_SEPARATOR + str(pserver_id)

    load_prog = framework.Program()
    load_block = load_prog.global_block()

    load_block.append_op(
        type='load',
        inputs={},
        outputs={'Out': [lookup_table_var]},
        attrs={'file_path': os.path.join(lookup_table_dir, table_file)})

    executor.run(load_prog)


T
bug fix  
tangwei12 已提交
984
def _save_persistable_vars(executor, dirname, program):
T
tangwei12 已提交
985 986
    """
    This function filters out all checkpoint variables from the give
T
bug fix  
tangwei12 已提交
987
    program and then save these variables to a sub-folder '__model__' of
T
tangwei12 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    the given directory.

    A variable is a checkpoint variable if it meets all following
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be saved.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
T
bug fix  
tangwei12 已提交
1011
            _save_persistable_vars(executor=exe,
T
tangwei12 已提交
1012 1013
                    dirname=param_path, program=prog)

T
bug fix  
tangwei12 已提交
1014
            # In this example, `_save_persistable_vars` function
T
tangwei12 已提交
1015
            # will first filters out all checkpoint variables in the default
T
bug fix  
tangwei12 已提交
1016
            # main program, and then saves these variables to the folder
T
tangwei12 已提交
1017 1018 1019 1020 1021 1022 1023 1024
            # "./my_paddle_model/__model__".
    """
    cur_dir = _get_model_dir(dirname)
    io.save_vars(
        executor,
        dirname=cur_dir,
        main_program=program,
        vars=None,
1025
        predicate=_is_checkpoint_var(),
T
tangwei12 已提交
1026 1027 1028 1029 1030
        filename=None)
    _write_success(cur_dir)


def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
1031
                                 pserver_endpoints):
T
tangwei12 已提交
1032 1033 1034
    """
    This function will send checkpoint notify message from Trainer 0
    to all the pservers.
T
bug fix  
tangwei12 已提交
1035
    The checkpoint notify message contains lookup table name,
T
tangwei12 已提交
1036 1037 1038 1039 1040 1041 1042
    the absolute path on pserver to save lookup_table.

    Args:
        executor(Executor): The executor to run for send checkpoint notify.
        dirname(str): The folder where to save checkpoints.
        lookup_table(string): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
T
bug fix  
tangwei12 已提交
1043
            table_name
1044 1045
        pserver_endpoints(list): the parameter server ip:port list.
            when use distribute lookup table, we can get pserver_endpoints by
T
tangwei12 已提交
1046 1047 1048
            distribute arguments.
    Return:
        None
T
bug fix  
tangwei12 已提交
1049

T
tangwei12 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            _save_pserver_vars_by_notify(executor=exe,
T
bug fix  
tangwei12 已提交
1060
                    dirname=param_path, lookup_table=table_name,
T
tangwei12 已提交
1061 1062 1063 1064 1065 1066 1067 1068
                    ps_endpoint_list=ps_endpoints)
    """
    cur_dir = _get_lookuptable_dir(dirname)

    checkpoint_notify_program = framework.Program()
    checkpoint_notify_block = checkpoint_notify_program.global_block()

    attrs = {}
1069
    attrs['epmap'] = pserver_endpoints.split(",")
T
tangwei12 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    attrs['dir'] = cur_dir
    attrs['lookup_table'] = lookup_table

    checkpoint_notify_block.append_op(
        type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
    executor.run(checkpoint_notify_program)


def _save_trainer_args(dirname, trainer_id, trainer_args):
    assert isinstance(trainer_args, dict)

    cur_dir = _get_trainer_dir(dirname, trainer_id)

    for name, value in trainer_args.iteritems():
        args_file = os.path.join(cur_dir, name)
        with open(args_file, 'w') as f:
            f.write(str(value))
    _write_success(cur_dir)


T
bug fix  
tangwei12 已提交
1090
def _load_trainer_args(checkpoint_dir, trainer_id, trainer_args):
T
tangwei12 已提交
1091
    """
T
bug fix  
tangwei12 已提交
1092
    trainer will load some args from it's independent directory,
T
tangwei12 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    such as epoch_id and step_id.

    Args:
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        trainer_id(int): current trainer id.
        trainer_args(list): list about load trainer args
    Return:
        None

    Examples:
        .. code-block:: python

            param_path = "./checkpoint/"
            serial = 7
            trainer_id = 2
            trainer_args = ["epoch_id", "step_id"]

            _load_trainer_args(checkpoint_dir=param_path, serial=serial,
            trainer_id=trainer_id, trainer_args=trainer_args)
    """
    assert isinstance(trainer_args, list)

T
bug fix  
tangwei12 已提交
1116
    cur_dir = _get_trainer_dir(checkpoint_dir, trainer_id)
T
tangwei12 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

    ret_values = []

    for arg in trainer_args:
        cur_file = os.path.join(cur_dir, arg)
        with open(cur_file, 'r') as f:
            contents = f.read()
            ret_values.append(contents.strip())
    return ret_values


1128 1129
def _is_checkpoint_var(except_vars=None):
    except_vars = [] if except_vars is None else except_vars
T
tangwei12 已提交
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    def _except_vars(var):
        """
        the checkpoint will not save or load all the variables.
        var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.

        : param var(Variable)
        """
        if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.RAW:
            return False
        # @GRAD are named for gradient variables, checkpoint will not save it.
        if "@GRAD" in var.name:
            return False
        # .trainer_ are named for distribute train variables, checkpoint will not save it.
        if ".trainer_" in var.name:
            return False

        # .block is named for distribute train variables, checkpoint will not save it.
        if ".block" in var.name:
            return False

        if var in except_vars:
            return False

        return var.persistable

    return _except_vars
T
tangwei12 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179


def _make_chekcpoint_dirs(dirs):
    """
    _make_chekcpoint_dirs will makdir local directory directly, when the directory is exist, it will igore it.
    """
    assert dirs is not None

    if os.path.isfile(dirs):
        raise OSError(errno.ENOTDIR, "dirs path shoule be a Directory.", dirs)

    if not os.path.isdir(dirs):
        try:
            os.makedirs(dirs)
        except OSError as err:
            if err.errno != errno.EEXIST:
                raise err


def _get_dir_serial(dirname):
    try:
T
bug fix  
tangwei12 已提交
1180
        _, serial = dirname.split(CHECKPOINT_SEPARATOR)
T
tangwei12 已提交
1181 1182 1183 1184 1185 1186
        serial_num = int(serial)
    except ValueError:
        serial_num = -1
    return serial_num


T
bug fix  
tangwei12 已提交
1187
def _get_serial_dir(dirname, serial, makedirs=False):
T
tangwei12 已提交
1188 1189
    serial_folder = CHECKPOINT_PREFIX + CHECKPOINT_SEPARATOR + str(serial)
    serial_dir = os.path.join(dirname, serial_folder)
T
bug fix  
tangwei12 已提交
1190 1191
    if makedirs:
        _make_chekcpoint_dirs(serial_dir)
T
tangwei12 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    return serial_dir


def _get_model_dir(dirname):
    model_dir = os.path.join(dirname, MODEL_DIR)
    _make_chekcpoint_dirs(model_dir)
    return model_dir


def _get_lookuptable_dir(dirname):
    lookuptable_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
    _make_chekcpoint_dirs(lookuptable_dir)
    return lookuptable_dir


def _get_trainer_dir(dirname, trainer_id):
    trainer_folder = TRAINER_PREFIX + CHECKPOINT_SEPARATOR + str(trainer_id)
    trainer_dir = os.path.join(dirname, trainer_folder)
    _make_chekcpoint_dirs(trainer_dir)
    return trainer_dir


def _scroll_delete(dirname, max_num_checkpoints=3):
    dirs = os.listdir(dirname)
    serial_map = {}
    for serial in dirs:
        serial_num = _get_dir_serial(serial)
        serial_map[serial_num] = serial

    if len(serial_map.keys()) <= max_num_checkpoints:
        return

    serials = serial_map.keys()
    serials.sort(reverse=True)
    serials = serials[max_num_checkpoints:]
    for serial in serials:
        cur_dir = _get_serial_dir(dirname, serial)
        try:
            shutil.rmtree(cur_dir)
        except OSError as err:
            if err.errno != errno.ENOENT:
                raise err


def _write_success(dirname):
    """
    write an empty file named "_SUCCESS" in checkpoint dir, indicate this checkpoint is correct.

    : param dirname
    """
    success_file = os.path.join(dirname, SUCCESS_MARK_FILENAME)
    with open(success_file, 'a') as f:
        now = time.ctime()
        f.write(now)


def _get_latest_checkpoint_serial(checkpoint_dir):
    """
    get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory

    : param checkpoint_dir
    """

    def has_success(checkpoint_dir, cur_dir):
        """
        is _SUCCESS in this dir
        """

        serial = _get_dir_serial(cur_dir)
T
bug fix  
tangwei12 已提交
1261 1262
        if serial == -1 or \
            not os.path.isdir(os.path.join(checkpoint_dir, cur_dir)):
T
tangwei12 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271
            return -1

        success_path = os.path.join(
            _get_serial_dir(checkpoint_dir, serial), MODEL_DIR,
            SUCCESS_MARK_FILENAME)
        if os.path.isfile(success_path):
            return serial

    current_dir = -1
T
bug fix  
tangwei12 已提交
1272 1273 1274 1275

    if not checkpoint_dir or not os.path.isdir(checkpoint_dir):
        return current_dir

T
tangwei12 已提交
1276 1277 1278 1279 1280 1281
    dirs = os.listdir(checkpoint_dir)
    for cur_dir in dirs:
        success_num = has_success(checkpoint_dir, cur_dir)
        if success_num > current_dir:
            current_dir = success_num
    return current_dir