executor.py 86.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26 27
from .framework import Program, default_main_program, Variable, Operator
from .framework import convert_np_dtype_to_dtype_, get_flags
28
from . import core
29
from . import unique_name
30 31
from . import compiler
from .. import compat as cpt
32
from .trainer_factory import TrainerFactory
33
from .trainer_factory import FetchHandlerMonitor
34
import copy
35
from . import framework
36
from .incubate.checkpoint import auto_checkpoint as acp
37

T
Tink_Y 已提交
38
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
39

Y
Yu Yang 已提交
40
g_scope = core.Scope()
F
flame 已提交
41 42
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
43

Y
Yu Yang 已提交
44

Y
Yang Yu 已提交
45
def global_scope():
Y
yuyang18 已提交
46
    """
47 48
    :api_attr: Static Graph

Y
yuyang18 已提交
49 50 51
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
52 53 54
    Returns:
        Scope: The global/default scope instance.

55 56 57
    Examples:
        .. code-block:: python

58
          import paddle
59 60
          import numpy

61 62
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
63
    """
Y
Yang Yu 已提交
64 65 66
    return g_scope


67
def _switch_scope(scope):
Y
Yang Yu 已提交
68 69 70 71 72 73
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
74
@signature_safe_contextmanager
Y
Yang Yu 已提交
75
def scope_guard(scope):
Y
yuyang18 已提交
76
    """
77 78
    :api_attr: Static Graph
    
79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96 97
        .. code-block:: python

98
            import paddle
L
lujun 已提交
99
            import numpy
100
            paddle.enable_static()
Y
yuyang18 已提交
101

102 103 104
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
105
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
106
    """
L
lujun 已提交
107

108
    ex = _switch_scope(scope)
109 110 111 112
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
113 114


115
def as_numpy(tensor, copy=False):
116 117 118
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
119

120
    Examples:
121 122 123 124 125 126 127 128 129 130
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
131 132 133

    Args:
       tensor(Variable): a instance of Tensor
134
       copy(bool, optional): Whether to use deep copy.
135 136 137 138

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
139
    if isinstance(tensor, core.LoDTensorArray):
140
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
141
    if isinstance(tensor, list):
142
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
143 144
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
145
    if len(lod) > 0:
D
dzhwinter 已提交
146
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
147 148 149
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
150
    if tensor._is_initialized():
151 152 153 154
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
155 156
    else:
        return None
D
dzhwinter 已提交
157 158


H
Huihuang Zheng 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
183 184
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


212
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
213 214
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
215
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
216 217 218

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
219 220
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
221 222 223 224
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
225
        feed (LoDTensor): the fed value, which must be a LoDTensor
226 227
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
228 229 230 231 232 233 234
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
235 236
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
237
            raise ValueError(
T
tianshuo78520a 已提交
238 239
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
240
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
241
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
242 243 244 245 246
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
247 248
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
249 250 251
    return True


252 253 254 255 256 257 258 259 260 261 262 263
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
264 265
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
266 267 268
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
269
        A boolean value that indicates whether a block has feed operators
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
292

293 294 295 296 297 298 299 300 301
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
302 303 304
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
305

X
xuwei06 已提交
306 307 308
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
330
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
331
    """
C
chengduoZH 已提交
332 333 334
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
335
    Args:
336 337 338 339
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
340 341 342 343
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
344 345 346
    Returns:
       LodTensor|numpy.ndarray
    """
347
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
348 349
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
350
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
351

352
    var = scope.find_var(_to_name_str(name))
353 354 355 356
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
357 358
    tensor = var.get_tensor()
    if return_numpy:
359
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
360 361 362
    return tensor


X
polish  
Xin Pan 已提交
363
def _to_name_str(var):
364 365 366 367 368 369 370 371
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
372
            return str(id(var))
373 374 375 376 377 378 379 380 381 382
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
383
    else:
384
        return _to_str(var)
Q
qiaolongfei 已提交
385 386


387 388 389 390 391 392 393 394 395 396 397
def _is_enable_standalone_executor():
    """
    Whether to use experimental executor `StandaloneExecutor`.
    """
    flag = False
    env_val = os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR', None)
    if env_val in [1, '1', True, 'True', 'true']:
        flag = True
    return flag


398 399 400 401
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
402
def _get_program_cache_key(feed, fetch_list):
403 404 405 406 407 408
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
409
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
410 411 412
    return str(feed_var_names + fetch_var_names)


413
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
427
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
428
            data(core.Place): the place of created tensor
429
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
430 431 432 433

        Returns:
            LoDTensor
        """
434
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
435
    if not isinstance(data, np.ndarray):
436 437 438
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
439 440
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
441 442 443 444 445 446 447 448 449 450 451 452 453
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
454

455
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
456 457 458 459 460
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


461
class FetchHandler(object):
D
Dong Daxiang 已提交
462 463 464
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
465 466
        self.period_secs = period_secs

D
Dong Daxiang 已提交
467 468 469 470 471
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
472 473 474 475

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
476 477 478 479 480 481 482 483
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
484 485 486
""")


487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
class _StandaloneExecutor(object):
    def __init__(self, place, main_program):
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
        self._new_exe = self._create_new_executor()

    def run(self, feed, fetch_list, return_numpy=True):
        """
        Args:
            feed(list|dict): This parameter represents the input Tensors of the model.
                If it is single card training, the feed is dict type, and if it is multi-card
                training, the parameter feed can be dict or list of Tensors. If the
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model runs. The default is None. 
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        feed = self._update_feed(feed)
        fetch_list = self._check_fetch(fetch_list)

        tensors = self._new_exe.run(feed, fetch_list)._move_to_list()
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
        # NOTE: It's a trick to set empty start_up program.
        startup_program = Program()
        outer_scope = global_scope()
        new_exe = core.StandaloneExecutor(self._place, startup_program.desc,
                                          self._main_program.desc, outer_scope)

        return new_exe

    def _update_feed(self, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % feed_name)
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
                    "Required fetch_var shall be str|Variable, but received {}".
                    format(type(fetch_var).__name__))

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
    def __init__(self, place):
        # {Program : _StandaloneExecutor}
        self._place = place
        self._cached_executors = {}

    def run(self, program, feed, fetch_list, return_numpy=True):
        new_exe = self._get_exe_from_cache(program)
        return new_exe.run(feed, fetch_list, return_numpy)

    def _get_exe_from_cache(self, program):
        """
        Return cached _StandaloneExecutor instance. If not found, create associated 
        _StandaloneExecutor instance with given program and cache it.
        """
        assert isinstance(
            program, Program), "Required type(Program), but received {}".format(
                type(program).__name__)
        if program not in self._cached_executors:
            new_exe = _StandaloneExecutor(self._place, program)
            self._cached_executors[program] = new_exe

        return self._cached_executors[program]


Y
Yu Yang 已提交
607
class Executor(object):
608
    """
609 610
    :api_attr: Static Graph

611
    An Executor in Python, supports single/multiple-GPU running,
612
    and single/multiple-CPU running.
C
chengduo 已提交
613 614

    Args:
615
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
616 617 618 619
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
620 621
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x`` 
            is the index of the GPUs.
C
chengduo 已提交
622 623 624

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
625

626
    Examples:
S
Fix doc  
sneaxiy 已提交
627 628
        .. code-block:: python

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

680 681
    """

682 683
    def __init__(self, place=None):
        if place is None:
684 685
            expected_place = framework._current_expected_place()
            self.place = expected_place
686
        else:
687
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
688
        self.program_caches = dict()
689
        self.ctx_caches = dict()
690 691
        self.scope_caches = dict()
        self.var_caches = dict()
692
        self.pruned_program_caches = dict()
693 694 695
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
696
        self._closed = False
697
        self.pruned_program_scope_caches = dict()
698
        self._prepare_to_run_called = False
D
dzhwinter 已提交
699

700 701 702
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

703 704 705 706
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
        self._executor_cache = _ExecutorCache(self.place)

707 708 709
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

710 711 712
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
713 714 715 716 717 718
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

719 720 721 722 723 724 725 726 727 728 729 730
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

731 732 733
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

734 735 736
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

Q
Qiao Longfei 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
762 763 764 765 766 767 768 769 770 771 772
                if global_block.has_var(name):
                    out = global_block.var(name)
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i})
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
Q
Qiao Longfei 已提交
773 774 775
        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
776 777 778
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
779 780 781 782 783 784 785 786 787 788
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
789 790
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
791 792 793
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
794
                var = global_block.var(feed_target_name)
795 796
                if not isinstance(cur_feed, core.LoDTensor):
                    cur_feed = _as_lodtensor(cur_feed, self.place, var.dtype)
H
Huihuang Zheng 已提交
797
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
798 799 800 801 802 803 804 805
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
806
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
807 808 809
        ]
        return outs

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
                    "The item in fetch_list should be str, variable or optimize_op, but recieved %s.",
                    type(item))

842
        for index, item in enumerate(fetch_list):
843 844 845 846 847 848 849
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
850 851 852 853
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".
                        format(index, index, index, type(item[0]).__name__))
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
967 968 969 970 971 972
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
973 974
    def close(self):
        """
C
chengduo 已提交
975 976 977
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
978

C
chengduo 已提交
979 980
        Returns:
            None
981 982 983 984

        Examples:
            .. code-block:: python

985
              import paddle
986

987 988
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
989 990
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
991
        """
992 993
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
994
            self._closed = True
Y
Yancey1989 已提交
995

X
fix  
Xin Pan 已提交
996
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
997
                      return_numpy, return_merged):
998
        from paddle.optimizer.lr import LRScheduler
999
        exe = program._executor
H
Huihuang Zheng 已提交
1000 1001 1002 1003 1004
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1005 1006 1007 1008
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1009
                var = global_block.var(feed_name) if need_check_feed else None
1010
                if not isinstance(feed_tensor, core.LoDTensor):
1011
                    # always set to CPU place, since the tensor need to be split
1012
                    # it is fast in CPU
1013 1014 1015
                    feed_tensor = _as_lodtensor(feed[feed_name],
                                                core.CPUPlace(), var.dtype
                                                if var else None)
H
Huihuang Zheng 已提交
1016
                if need_check_feed:
1017
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1018 1019
                feed_tensor_dict[feed_name] = feed_tensor

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
            #TODO(zhhsplendid): handle other feed data format case for CINN
            use_cinn = get_flags("FLAGS_use_cinn")["FLAGS_use_cinn"]
            if use_cinn:
                fetch_var_names = list(map(_to_name_str, fetch_list))
                fetch_tensors = exe.run_from_cinn(
                    feed_tensor_dict, fetch_var_names)._move_to_list()
                return as_numpy(
                    fetch_tensors) if return_numpy else fetch_tensors
            else:
                exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1030 1031 1032 1033 1034 1035 1036 1037 1038
        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1039 1040
                    var = global_block.var(
                        feed_name) if need_check_feed else None
1041
                    if not isinstance(tensor, core.LoDTensor):
1042 1043 1044
                        tensor = _as_lodtensor(each[feed_name],
                                               program._places[i], var.dtype
                                               if var else None)
H
Huihuang Zheng 已提交
1045 1046
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1047 1048
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1049 1050

            use_cinn = get_flags("FLAGS_use_cinn")["FLAGS_use_cinn"]
1051
            exe.feed_tensors_into_local_scopes(res)
1052

1053 1054
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1055
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1056 1057 1058
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1059 1060 1061 1062 1063 1064 1065 1066 1067
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
                exe.feed_and_split_tensor_into_local_scopes({
                    lr_sheduler._var_name: lr_tensor
                })
1068

X
polish  
Xin Pan 已提交
1069
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1070
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1071
        return as_numpy(tensors) if return_numpy else tensors
1072

Y
Yu Yang 已提交
1073
    def run(self,
Y
Yu Yang 已提交
1074
            program=None,
1075 1076
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
1077
            feed_var_name='feed',
Y
Yu Yang 已提交
1078
            fetch_var_name='fetch',
D
dzhwinter 已提交
1079
            scope=None,
1080
            return_numpy=True,
Z
Zhen Wang 已提交
1081
            use_program_cache=False,
1082 1083
            return_merged=True,
            use_prune=False):
1084
        """
C
chengduo 已提交
1085 1086 1087
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1088 1089
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1090

C
chengduo 已提交
1091 1092 1093
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1094
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1095
                The default is None.
1096
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1097
                If it is single card training, the feed is dict type, and if it is multi-card
1098
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1099 1100 1101 1102 1103 1104 1105
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1106
            fetch_list(list): This parameter represents the Tensors that need to be returned
1107
                after the model runs. The default is None. 
1108
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1109
                the feed operator. The default is "feed".
1110
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1111 1112
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
1113 1114 1115
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1116 1117 1118
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1119 1120
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1121
                The default is False.
1122
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1123 1124
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1125 1126 1127 1128 1129 1130 1131 1132
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1133 1134 1135 1136 1137 1138 1139
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1156 1157
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1158

Z
Zhen Wang 已提交
1159
        Examples 1:
1160 1161
            .. code-block:: python

1162 1163
                import paddle
                import numpy
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1177

1178 1179
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1180

1181 1182 1183 1184 1185
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1186 1187 1188 1189

        Examples 2:
            .. code-block:: python

1190
                import paddle
Z
Zhen Wang 已提交
1191 1192 1193
                import numpy as np

                # First create the Executor.
1194 1195 1196
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1197

1198
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1199
                class_dim = 2
1200 1201 1202
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1203 1204 1205
                adam.minimize(loss)

                # Run the startup program once and only once.
1206 1207 1208 1209 1210
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1211 1212 1213 1214
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1215 1216 1217 1218
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1219 1220 1221 1222
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1223 1224
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1225 1226 1227
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1228 1229 1230 1231
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1232 1233
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1234 1235
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1236
                print(merged_prediction)
1237
 
Z
Zhen Wang 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1252

1253
        """
C
chengduo 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
Z
Zhen Wang 已提交
1263
                use_program_cache=use_program_cache,
1264
                use_prune=use_prune,
Z
Zhen Wang 已提交
1265
                return_merged=return_merged)
C
chengduo 已提交
1266
        except Exception as e:
1267
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1268 1269

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1270
                  fetch_var_name, scope, return_numpy, use_program_cache,
1271
                  return_merged, use_prune):
Y
Yancey1989 已提交
1272 1273 1274
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1275
        use_default_main_program = program is None
1276 1277
        if program is None:
            program = default_main_program()
1278

1279
        fetch_list = self._check_fetch_list(fetch_list)
1280 1281 1282 1283 1284

        if isinstance(program, Program) and program._pipeline_opt:
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1285 1286 1287 1288
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache)
C
chengduo 已提交
1289
        if isinstance(program, Program) and \
1290
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1291
            if use_default_main_program:
1292 1293 1294 1295 1296 1297 1298 1299
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1300
            warnings.warn(error_info)
1301

1302 1303
        if scope is None:
            scope = global_scope()
1304

1305 1306 1307 1308 1309 1310
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
        if self._enable_interpreter_core and not program._is_start_up_program_:
            return self._executor_cache.run(program, feed, fetch_list,
                                            return_numpy)

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

X
polish  
Xin Pan 已提交
1343
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
1359
                    varobj.stop_gradient == True and \
1360 1361 1362 1363 1364
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1365 1366
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1367
        # For backward compatibility, run directly.
1368
        if not compiled:
1369 1370 1371
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
                return self._run_parallel(
                    program._graph,
                    scope=scope,
                    feed=feed,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name,
                    return_numpy=return_numpy,
                    return_merged=return_merged)

C
chengduo 已提交
1387
            return self._run_program(
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
1398 1399 1400
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1401
            return self._run_parallel(
X
fix  
Xin Pan 已提交
1402
                program,
1403 1404 1405
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
1406
                fetch_var_name=fetch_var_name,
Z
Zhen Wang 已提交
1407 1408
                return_numpy=return_numpy,
                return_merged=return_merged)
1409

C
chengduo 已提交
1410
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1411
                     fetch_var_name, scope, return_numpy, use_program_cache):
1412
        from paddle.optimizer.lr import LRScheduler
1413 1414
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1415 1416 1417 1418
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1419
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1420 1421 1422
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1423

1424
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1425
        if not isinstance(program, Program):
D
dzhwinter 已提交
1426 1427 1428
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1429

1430 1431 1432 1433 1434
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
                % (type(fetch_var_name)))

1435
        if use_program_cache:
1436
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1437
            cached_program = self._get_program_cache(cache_key)
1438
            cached_ctx = self._get_ctx_cache(cache_key)
1439
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1440 1441 1442 1443 1444 1445 1446 1447
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1448
                fetch_list_str = list(map(_to_name_str, fetch_list))
1449
                cached_ctx = self._default_executor.prepare(
1450 1451 1452 1453 1454 1455 1456
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1457 1458
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1459
                self._add_ctx_cache(cache_key, cached_ctx)
1460
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1461
            program = cached_program
1462
            ctx = cached_ctx
1463
            scope = cached_scope
1464
        else:
Q
Qiao Longfei 已提交
1465 1466 1467 1468 1469 1470 1471 1472
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
1473 1474
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
1475
                              LRScheduler), "must be LRScheduler"
1476 1477 1478 1479 1480 1481 1482
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1483
        if not use_program_cache:
C
chengduo 已提交
1484
            self._default_executor.run(program.desc, scope, 0, True, True,
1485
                                       [fetch_var_name])
1486
        else:
1487 1488
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1489
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1490
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1491
        if return_numpy:
1492 1493 1494
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1495

X
Xin Pan 已提交
1496 1497
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
    def _check_fetch_list(self, fetch_list):
        is_fetch_var = lambda var: isinstance(var, (Variable, str, six.string_types))
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

        if fetch_list is None: return []
        if is_fetch_var(fetch_list): return [fetch_list]

        assert is_tuple_list(fetch_list), \
            "Currently , The fetch_list type only should be list or tuple, \n"\
            "but the input type is {}. For more information please refer to \n"\
            "the executor.run(...).".format(type(fetch_list))

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".
                    format(i, type(var).__name__))

        return res

1528 1529
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
1530
            fout.write(str(trainer))
1531
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1532 1533 1534
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1551 1552 1553 1554 1555 1556 1557 1558 1559
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1560
        is_heter = 0
T
Thunderbrook 已提交
1561
        use_ps_gpu = 0
T
Thunderbrook 已提交
1562 1563 1564
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1565
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1566
                is_heter = 1
T
Thunderbrook 已提交
1567 1568
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1569 1570 1571 1572
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1573 1574 1575
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1576
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1577 1578 1579 1580 1581
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1582
        if not compiled:
H
hutuxian 已提交
1583 1584 1585 1586 1587 1588
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1589
                trainer._set_thread_barrier(program._is_distributed)
1590
            trainer._set_program(program)
T
Thunderbrook 已提交
1591 1592
            if is_heter:
                trainer._set_heter_info(ret)
1593
        else:
H
hutuxian 已提交
1594 1595 1596 1597 1598 1599
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1600
            trainer._set_program(program.program)
H
hutuxian 已提交
1601

1602
        if thread <= 0:
T
Thunderbrook 已提交
1603 1604 1605
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1606
                raise RuntimeError(
1607 1608
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1609
            else:
1610
                trainer._set_thread(dataset.thread_num)
1611
        else:
1612
            trainer._set_thread(thread)
H
hutuxian 已提交
1613

1614 1615
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1616
        return scope, trainer
1617

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
            # The following fake dataset is created to call 
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1639 1640 1641 1642 1643 1644
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
1645 1646 1647 1648 1649 1650 1651
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1652 1653

        dataset._prepare_to_run()
1654 1655
        real_fetch_list = []
        if program._pipeline_opt:
1656
            real_program = program._pipeline_opt["section_program"]
1657 1658 1659 1660 1661 1662 1663 1664
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
            program._pipeline_opt["section_program"] = self._add_feed_fetch_ops(
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
1679
            fetch_list = None
1680 1681 1682 1683 1684 1685

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
1686 1687 1688 1689
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1690 1691 1692 1693

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

1694 1695
        if program._pipeline_opt is None:
            self._dump_debug_info(program=program, trainer=trainer)
1696 1697 1698
        # in case of calling _set_use_ps_gpu explicitly
        if dataset.use_ps_gpu is False:
            dataset._set_use_ps_gpu(trainer.proto_desc.use_ps_gpu)
T
tangwei12 已提交
1699
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1700 1701 1702 1703

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

T
tangwei12 已提交
1704 1705 1706 1707 1708 1709
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
D
Dong Daxiang 已提交
1710
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1711 1712 1713
        else:

            self._default_executor.run_from_dataset(trainer_instance)
D
Dong Daxiang 已提交
1714
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1715 1716

        dataset._dynamic_adjust_after_train()
1717
        dataset._finish_to_run()
1718 1719 1720 1721
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
1722

1723 1724
        return None

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
    def _prepare_pipeline_ctx(self,
                              program=None,
                              dataset=None,
                              scope=None,
                              thread=0,
                              is_infer=False,
                              debug=False,
                              fetch_list=None,
                              fetch_info=None,
                              print_period=100,
                              fetch_handler=None,
                              use_program_cache=False):
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

            real_program = self._add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

        # in case of calling _set_use_ps_gpu explicitly
        if dataset.use_ps_gpu is False:
            dataset._set_use_ps_gpu(trainer.proto_desc.use_ps_gpu)
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
1823 1824 1825 1826
        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer_desc, scope, dataset.dataset)

        ctx = [scope, real_fetch_list, trainer_instance]
1827
        if use_program_cache: self._add_ctx_cache(cache_key, ctx)
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
        return ctx

    def _run_pipeline(self,
                      program=None,
                      dataset=None,
                      scope=None,
                      thread=0,
                      is_infer=False,
                      debug=False,
                      fetch_list=None,
                      fetch_info=None,
                      print_period=100,
                      fetch_handler=None,
                      use_program_cache=False):
1843
        scope, real_fetch_list, trainer_instance = \
1844 1845 1846 1847 1848
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1859 1860
        self._default_executor.run_from_dataset(trainer_instance)

1861 1862 1863
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

1864 1865 1866 1867 1868 1869 1870
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

1871 1872 1873 1874 1875
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1876 1877 1878
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1879 1880
                           print_period=100,
                           fetch_handler=None):
1881
        """
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
1893

1894 1895
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1896
                if not provided, then default_main_program (not compiled) will be used.
1897
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1898 1899
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
1900
            scope(Scope): the scope used to run this program, you can switch it to different scope
1901 1902 1903
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1904
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1905
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
1906
                training, default is None
1907
            fetch_info(String List): print information for each Tensor, default is None
1908
            print_period(int): the number of mini-batches for each print, default is 100
1909
            fetch_handler(FetchHandler): a user define class for fetch output.
1910

1911 1912 1913 1914
        Returns:
            None

        Examples:
1915 1916

            .. code-block:: python
1917

1918
                import paddle
1919

1920 1921 1922 1923 1924 1925
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
1926
                dataset.set_use_var([x, y])
1927
                dataset.set_thread(1)
1928 1929
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
1930
                dataset.set_filelist(filelist)
1931 1932 1933
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
1934

1935
        """
1936 1937 1938
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1939

T
Thunderbrook 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
        return self._start_heter_trainer(program, scope, False, debug,
                                         fetch_list, fetch_info, print_period,
                                         fetch_handler)

    def _start_heter_trainer(self,
                             program=None,
                             scope=None,
                             is_infer=False,
                             debug=False,
                             fetch_list=None,
                             fetch_info=None,
                             print_period=100,
                             fetch_handler=None):

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

1994 1995 1996 1997 1998 1999 2000 2001
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2002 2003
                           print_period=100,
                           fetch_handler=None):
2004 2005 2006 2007 2008 2009 2010 2011
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2012

2013 2014 2015 2016
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2017
                if not provided, then default_main_program (not compiled) will be used.
2018
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2019 2020
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2021
            scope(Scope): the scope used to run this program, you can switch it to different scope
2022 2023 2024
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2025
            debug(bool): whether a user wants to run train_from_dataset 
2026
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2027
                during training
2028
            fetch_info(String List): print information for each Tensor, its length should be equal
2029 2030
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2031
            fetch_handler(FetchHandler): a user define class for fetch output.
2032 2033 2034

        Returns:
            None
2035
        
2036
        Examples:
2037
        
2038 2039
            .. code-block:: python

2040
              import paddle
2041

2042 2043 2044 2045 2046 2047
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2048
              dataset.set_use_var([x, y])
2049
              dataset.set_thread(1)
2050 2051
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2052
              dataset.set_filelist(filelist)
2053 2054
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2055
                                     dataset=dataset)
2056 2057

        """
2058 2059 2060
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)