parallel_executor.cc 29.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
36
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
37
#endif
Y
Yu Yang 已提交
38
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
39 40
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
41
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
42
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
43

Y
Yang Yang 已提交
44
namespace paddle {
Y
Yu Yang 已提交
45 46
namespace framework {

Y
Yu Yang 已提交
47
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
48
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
49
static bool gProfileStarted = false;
Y
Yu Yang 已提交
50
#endif
51

Y
Yu Yang 已提交
52 53 54
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
55
      : places_(places) {
Y
Yu Yang 已提交
56
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
57 58
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
60 61 62
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
63
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
64 65 66 67
#endif
      });
    }
  }
Y
Yu Yang 已提交
68

69 70 71 72 73 74 75 76 77 78 79
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
80

81
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
82 83 84

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
102 103
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
104 105 106 107 108 109 110 111 112 113 114 115
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
116
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
117 118 119
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
120 121
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
122 123 124 125
      }

      flat_nccl_ids.push_back(nccl_id);

126 127
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
128 129 130 131 132 133
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
134 135
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
136 137 138 139 140 141 142 143 144 145 146
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

147 148
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
149 150

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
151 152 153 154 155 156 157 158
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
159 160 161 162 163 164 165 166 167

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
168

169 170 171 172
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
173 174
    }
  }
175

176
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
177 178 179 180 181 182 183 184 185 186 187
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    if (bst->use_hierarchical_allreduce_) {
      PADDLE_ENFORCE(bst->num_trainers_ > 1, "num_trainers:%llu < 1",
                     bst->num_trainers_);
      PADDLE_ENFORCE(bst->hierarchical_allreduce_inter_nranks_ > 1,
                     "inter_nranks:%d < 1",
                     bst->hierarchical_allreduce_inter_nranks_);
      PADDLE_ENFORCE(
          (bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_ == 0),
          "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
          bst->hierarchical_allreduce_inter_nranks_);

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

203 204
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
205
    InitNCCLCtxs(scope, *bst);
206
  }
207 208
#endif

209 210 211 212 213
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
214
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
215 216
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
217
  std::vector<Scope *> local_exec_scopes_;
218
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
219
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
220

221 222
  std::unordered_map<std::string, bool> is_persistable_;

P
peizhilin 已提交
223
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
224
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
225
#endif
C
chengduoZH 已提交
226 227
  bool own_local_scope_;
  bool use_cuda_;
228
  bool use_all_reduce_;
229
  size_t nranks_;
S
sneaxiy 已提交
230

231
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
232
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
233 234
};

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
  }

255 256 257 258 259 260 261 262 263 264 265 266
  if (build_strategy_.memory_optimize_) {
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
  }
267 268 269 270 271 272

  if (GetEagerDeletionThreshold() < 0) {
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
273 274 275 276 277
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
278
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
279
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
280 281
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
282 283
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
284
      } else {
S
sneaxiy 已提交
285 286
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
287 288
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
289
    } else {
S
sneaxiy 已提交
290
#endif
S
sneaxiy 已提交
291 292 293 294 295 296 297
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
298 299 300 301
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
302
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
303 304
  }

S
sneaxiy 已提交
305
  if (!gcs_.empty()) {
S
sneaxiy 已提交
306 307
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
308 309
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
310 311
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
312
                                     &last_live_ops_of_vars);
313
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
314
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
315 316 317 318 319
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

320 321 322 323
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
338 339 340 341 342 343 344 345
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
346
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
347
  member_->global_scope_ = scope;
348
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
349
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
350 351
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
352
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
353 354 355 356 357 358 359
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
360 361 362 363 364
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
Y
Yancey1989 已提交
365

366
  LOG(INFO) << string::Sprintf(
C
chengduo 已提交
367 368 369 370 371
      "The number of %s, which is used in ParallelExecutor, is %lu. And "
      "the Program will be copied %lu copies",
      (member_->use_cuda_ ? "CUDAPlace" : "CPUPlace"), places.size(),
      places.size());

372
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
373
  // Create local scopes
374
  if (local_scopes.empty()) {
C
chengduoZH 已提交
375
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
376 377
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
378
      member_->local_scopes_.emplace_back(&scope->NewScope());
379 380
    }
  } else {
C
chengduoZH 已提交
381
    member_->own_local_scope_ = false;
382 383
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
384
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
385
    }
Y
Yu Yang 已提交
386 387
  }

Q
Qiao Longfei 已提交
388
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
389
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
390 391
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
392
    graphs.push_back(graph);
D
dongdaxiang 已提交
393
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
394 395 396 397
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
398
  }
Q
Qiao Longfei 已提交
399

Y
Yancey1989 已提交
400 401 402
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
403 404 405 406
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
407 408 409 410
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
411

412
  if (member_->use_cuda_ && member_->nranks_ > 1) {
P
peizhilin 已提交
413
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
414
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
415

W
Wu Yi 已提交
416 417 418
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
419
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
420 421 422
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
423 424
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
425
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
426 427 428
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
429
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
430
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
431
    }
Y
Yu Yang 已提交
432
#endif
C
chengduoZH 已提交
433
  }
Y
Yan Xu 已提交
434 435
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
436
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
437 438 439 440 441 442 443 444 445
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
446
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
447
  if (need_broadcast()) {
C
chengduo 已提交
448
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
449
  }
450

Q
Qiao Longfei 已提交
451
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
452

Q
Qiao Longfei 已提交
453 454 455
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
456
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
457
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
458
    VLOG(3) << "use local async mode";
C
chengduo 已提交
459 460 461 462
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
463
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
464 465 466 467
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
468
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
469
    }
Q
Qiao Longfei 已提交
470
  } else {
C
chengduo 已提交
471 472 473
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
474
  }
C
chengduoZH 已提交
475
#else
C
chengduo 已提交
476
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
477
    VLOG(3) << "use local async mode";
C
chengduo 已提交
478 479 480
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
481
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
482
      graphs[i] = member_->build_strategy_.Apply(
483
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
484
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
485
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
486
    }
Q
can run  
Qiao Longfei 已提交
487
  } else {
C
chengduo 已提交
488 489 490
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
491
  }
Y
Yu Yang 已提交
492
#endif
493

494
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
495

Q
Qiao Longfei 已提交
496 497
  async_graphs[0] = graph;

498 499
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
500
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
501 502 503 504 505 506
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
507 508 509

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
510 511
    }
  }
Y
Yancey1989 已提交
512

W
Wu Yi 已提交
513 514
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
515
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
516 517 518 519
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
520
          << ir::GraphNum(*graph)
C
chengduo 已提交
521 522 523 524 525
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
526 527
  }

528 529 530 531 532 533 534 535 536 537 538 539
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size());

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
540
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
541 542
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
543 544 545
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
546
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
547
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
548
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
549 550
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
551 552 553 554 555
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
Y
Yancey1989 已提交
556 557 558 559
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
560
  } else {
Y
Yancey1989 已提交
561
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
562
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
563
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
564 565
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
566
    } else {
Q
can run  
Qiao Longfei 已提交
567
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
568
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
569 570
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
571
    }
572
    final_graphs.emplace_back(graph);
C
chengduoZH 已提交
573
  }
Y
yuyang18 已提交
574

Q
can run  
Qiao Longfei 已提交
575
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
576
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
577
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
578 579 580 581 582 583 584 585 586
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
587
  }
Y
Yu Yang 已提交
588 589
}

Y
Yancey1989 已提交
590
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
591
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
592
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
593
  // the initializing bcast, all vars would be bcast from device(0).
594
  for (auto &var : vars) {
X
Xin Pan 已提交
595
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
596
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
597 598 599 600
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
601
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
602
      VLOG(3) << "one in var not inited, return!";
603 604
      continue;
    }
605 606
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
607
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
608
      std::vector<void *> buffers;
C
chengduo 已提交
609
      buffers.reserve(member_->places_.size());
610 611 612 613 614
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
615

Y
Yan Xu 已提交
616
        if (i == 0 && trainer_id == 0) {
617 618
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
619
          auto local_scope = member_->local_scopes_[i];
620
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
621
          t->Resize(dims);
622
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
623
        }
624
        buffers.push_back(buffer);
625
      }
626

627 628 629
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
630
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
631 632
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
633
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
634 635
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
636
        }
637
        nccl_ctxs->WaitAll();
638
      }
C
chengduoZH 已提交
639
#endif
640 641
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
642
      for (size_t i = 1; i < member_->places_.size(); ++i) {
643 644
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
645

Q
Qiao Longfei 已提交
646
        auto copy_memory = [&] {
647 648 649
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
650 651
        };

Q
Qiao Longfei 已提交
652
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
653 654 655 656 657 658 659

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
660
        } else {
Q
can run  
Qiao Longfei 已提交
661
          share_memory();
662
        }
Y
Yu Yang 已提交
663
      }
Y
Stash  
Yu Yang 已提交
664 665
    }
  }
Y
Yu Yang 已提交
666
}
Y
Yu Yang 已提交
667

Y
Yu Yang 已提交
668 669
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
670
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
671 672 673
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
674 675
  }
#endif
Y
Yu Yang 已提交
676

X
Xin Pan 已提交
677
  platform::RecordBlock b(0);
678 679 680

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
681 682

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
683 684 685
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
686
}
Y
Yu Yang 已提交
687

Y
Yu Yang 已提交
688 689 690 691 692 693 694
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    for (auto &pair : map) {
695 696 697 698 699 700
      bool is_persistable = member_->IsPersistable(pair.first);
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
701 702 703 704 705 706 707 708
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
709
  for (auto &pair : tensors) {
Y
Yu Yang 已提交
710
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
C
chengduo 已提交
711 712 713 714 715 716
    if (member_->places_.size() != lod_tensors.size()) {
      bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
      auto error_info = string::Sprintf(
          "The number(%d) of samples of "
          "current batch is less than the count(%d) of "
          "devices(%s), currently, it is not allowed. ",
717
          lod_tensors.size(), member_->places_.size(),
C
chengduo 已提交
718 719 720 721 722 723 724 725
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
    }
726 727

    bool is_persistable = member_->IsPersistable(pair.first);
X
Xin Pan 已提交
728
    for (size_t j = 0; j < member_->places_.size(); ++j) {
729 730 731 732 733
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
734 735
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
736 737 738 739
    }
  }
}

X
Xin Pan 已提交
740 741 742 743 744 745 746
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

747
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
748
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
749
    const BuildStrategy &build_strategy) const {
750 751 752
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
753

Y
Yancey1989 已提交
754
  bool enable_parallel_graph = true;
755

X
Xin Pan 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
769 770 771
    }
  }

772
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
773
    if (build_strategy.enable_sequential_execution_ ||
774
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
775
      enable_parallel_graph = false;
776 777 778 779 780 781 782 783 784
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
785
  return enable_parallel_graph;
786 787
}

Y
Yu Yang 已提交
788
}  // namespace framework
Y
Yang Yang 已提交
789
}  // namespace paddle
S
sneaxiy 已提交
790

S
sneaxiy 已提交
791
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
792
USE_PASS(eager_deletion_pass);
793
USE_PASS(buffer_shared_inplace_pass);
794
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);