p_norm_op.cu 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
16
#ifdef __NVCC__
17
#include "cub/cub.cuh"
18 19 20 21 22
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
G
Guoxia Wang 已提交
23
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
24
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
25
#include "paddle/fluid/operators/p_norm_op.h"
26 27
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
G
Guoxia Wang 已提交
28
#include "paddle/fluid/platform/float16.h"
29 30 31 32 33 34 35 36 37

namespace paddle {
namespace operators {

template <typename T>
__device__ __forceinline__ int sgn(T val) {
  return (T(0) < val) - (val < T(0));
}

G
Guoxia Wang 已提交
38 39 40
__device__ __forceinline__ platform::float16 inline_abs(platform::float16 x) {
  return static_cast<platform::float16>(abs(static_cast<float>(x)));
}
41 42 43
__device__ __forceinline__ float inline_abs(float x) { return abs(x); }
__device__ __forceinline__ double inline_abs(double x) { return abs(x); }

G
Guoxia Wang 已提交
44 45 46
__device__ __forceinline__ int inline_sign(platform::float16 x) {
  return sgn<platform::float16>(x);
}
47 48 49
__device__ __forceinline__ int inline_sign(float x) { return sgn<float>(x); }
__device__ __forceinline__ int inline_sign(double x) { return sgn<double>(x); }

G
Guoxia Wang 已提交
50 51 52 53 54
__device__ __forceinline__ platform::float16 inline_pow(
    platform::float16 base, platform::float16 exponent) {
  return static_cast<platform::float16>(
      pow(static_cast<float>(base), static_cast<float>(exponent)));
}
55 56 57 58 59 60 61
__device__ __forceinline__ float inline_pow(float base, float exponent) {
  return pow(base, exponent);
}
__device__ __forceinline__ double inline_pow(double base, double exponent) {
  return pow(base, exponent);
}

62
template <typename T>
63 64 65 66
struct NonzeroFunctor {
  HOSTDEVICE explicit inline NonzeroFunctor() {}
  HOSTDEVICE inline T operator()(const T& x) const {
    return static_cast<T>(static_cast<double>(x) != 0);
67
  }
68
};
69

70
template <typename T>
71 72 73 74
struct AbsFunctor {
  HOSTDEVICE explicit inline AbsFunctor() {}
  HOSTDEVICE inline T operator()(const T& x) const {
    return static_cast<T>(inline_abs(x));
75
  }
76
};
77

78 79 80 81
template <typename Tx, typename Ty = Tx>
struct UnsignedPowFunctor {
  HOSTDEVICE explicit inline UnsignedPowFunctor(float porder) {
    this->porder = porder;
82
  }
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(inline_pow(inline_abs(x), static_cast<Tx>(porder)));
  }
  float porder;
};

template <typename Tx, typename Ty = Tx>
struct PowFunctor {
  HOSTDEVICE explicit inline PowFunctor(float porder) { this->porder = porder; }
  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(inline_pow(x, static_cast<Tx>(porder)));
  }
  float porder;
};

98 99 100 101 102 103 104 105 106 107 108 109 110
template <typename DeviceContext, typename T>
class PnormCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* out_norm = ctx.Output<framework::Tensor>("Out");
    const T* x = in_x->data<T>();
    T* norm = out_norm->mutable_data<T>(ctx.GetPlace());
    auto xdim = in_x->dims();
    auto ndim = out_norm->dims();
    float porder = ctx.Attr<float>("porder");
    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis = xdim.size() + axis;
111
    std::vector<int> reduce_axis = {axis};
112

113
    auto stream = ctx.cuda_device_context().stream();
114

115
    using MT = typename details::MPTypeTrait<T>::Type;
116
    if (porder == 0) {
117 118
      TensorReduceFunctorImpl<T, T, kps::AddFunctor, NonzeroFunctor<T>>(
          *in_x, out_norm, NonzeroFunctor<T>(), reduce_axis, stream);
119
    } else if (porder == INFINITY) {
120 121
      TensorReduceFunctorImpl<T, T, kps::MaxFunctor, AbsFunctor<T>>(
          *in_x, out_norm, AbsFunctor<T>(), reduce_axis, stream);
122
    } else if (porder == -INFINITY) {
123 124
      TensorReduceFunctorImpl<T, T, kps::MinFunctor, AbsFunctor<T>>(
          *in_x, out_norm, AbsFunctor<T>(), reduce_axis, stream);
125
    } else {
126 127 128 129 130 131 132 133 134 135 136 137 138
      framework::Tensor tmp_x;
      tmp_x.mutable_data<T>(xdim, ctx.GetPlace());
      std::vector<const framework::Tensor*> ins = {in_x};
      std::vector<framework::Tensor*> outs = {&tmp_x};
      auto func = UnsignedPowFunctor<MT, T>(porder);
      const auto& cuda_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();

      LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, MT, T,
                                          UnsignedPowFunctor<MT, T>>(
          cuda_ctx, ins, &outs, func);
      framework::Tensor tmp_y;
      tmp_y.mutable_data<T>(ndim, ctx.GetPlace());
139 140
      TensorReduceFunctorImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
          tmp_x, &tmp_y, kps::IdentityFunctor<T>(), reduce_axis, stream);
141 142 143 144 145 146 147 148
      const framework::Tensor* tmp_norm = &tmp_y;
      ins = {tmp_norm};
      outs = {out_norm};
      auto func_inverse = UnsignedPowFunctor<MT, T>(1. / porder);

      LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, MT, T,
                                          UnsignedPowFunctor<MT, T>>(
          cuda_ctx, ins, &outs, func_inverse);
149
    }
150 151 152
  }
};

153 154 155 156 157 158 159 160 161 162 163 164 165
template <typename T>
struct AbsMaxAndMinGradFunctor {
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
                  const Dim& dim, int size) {
    auto equals = ((*x).abs() == y->broadcast(dim));
    auto ones = dx->constant(static_cast<T>(1.));
    auto negs = dx->constant(static_cast<T>(-1.));
    auto zeros = dx->constant(static_cast<T>(0.));
    auto positives = (*x) > zeros;
    dx->device(place) = dy->broadcast(dim) * equals.select(ones, zeros) *
                        positives.select(ones, negs);
166
  }
167
};
168

169 170 171 172 173 174 175 176 177 178 179 180
template <typename T>
struct PNormPostGradFunctor {
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
                  const Dim& dim, int size) {
    auto ones = dx->constant(static_cast<T>(1.));
    auto negs = dx->constant(static_cast<T>(-1.));
    auto zeros = dx->constant(static_cast<T>(0.));
    auto positives = (*x) > zeros;
    dx->device(place) = (*dx) * dy->broadcast(dim) * y->broadcast(dim) *
                        positives.select(ones, negs);
181
  }
182
};
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197
template <typename DeviceContext, typename T, typename AttrType = T>
class PnormGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* in_norm = ctx.Input<framework::Tensor>("Out");
    auto* in_norm_dy =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    T* dx = out_dx->mutable_data<T>(ctx.GetPlace());

    auto xdim = in_x->dims();
    float porder = ctx.Attr<float>("porder");
    int axis = ctx.Attr<int>("axis");
198
    bool reduce_all = ((axis < 0) || (in_norm->numel() == 1));
199
    if (axis < 0) axis = xdim.size() + axis;
200
    const std::vector<int> dims = {axis};
201

202
    auto& cuda_ctx = ctx.template device_context<DeviceContext>();
203

204 205
    if (porder == 0) {
      math::SetConstant<DeviceContext, T> set_zero;
206
      set_zero(cuda_ctx, out_dx, static_cast<T>(0));
207
    } else if (porder == INFINITY || porder == -INFINITY) {
208 209
      LaunchReduceGradKernel<DeviceContext, T, AbsMaxAndMinGradFunctor<T>>(
          ctx, in_x, in_norm, in_norm_dy, out_dx, dims, reduce_all);
210
    } else {
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
      framework::Tensor tmp_norm;
      tmp_norm.mutable_data<T>(in_norm->dims(), ctx.GetPlace());
      std::vector<const framework::Tensor*> ins = {in_norm};
      std::vector<framework::Tensor*> outs = {&tmp_norm};
      auto pow_functor = PowFunctor<T>(1. - porder);
      LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T,
                                          PowFunctor<T>>(cuda_ctx, ins, &outs,
                                                         pow_functor);
      ins = {in_x};
      outs = {out_dx};
      auto unsigned_pow = UnsignedPowFunctor<T>(porder - 1.);
      LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T,
                                          UnsignedPowFunctor<T>>(
          cuda_ctx, ins, &outs, unsigned_pow);
      const framework::Tensor* tmp_norm_const = &tmp_norm;
      LaunchReduceGradKernel<DeviceContext, T, PNormPostGradFunctor<T>>(
          ctx, in_x, tmp_norm_const, in_norm_dy, out_dx, dims, reduce_all);
228
    }
229 230 231 232 233 234 235 236 237
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

G
Guoxia Wang 已提交
238 239 240
REGISTER_OP_CUDA_KERNEL(p_norm,
                        ops::PnormCUDAKernel<CUDA, paddle::platform::float16>,
                        ops::PnormCUDAKernel<CUDA, float>,
241
                        ops::PnormCUDAKernel<CUDA, double>);
G
Guoxia Wang 已提交
242 243 244 245
REGISTER_OP_CUDA_KERNEL(
    p_norm_grad, ops::PnormGradCUDAKernel<CUDA, paddle::platform::float16>,
    ops::PnormGradCUDAKernel<CUDA, float>,
    ops::PnormGradCUDAKernel<CUDA, double>);