p_norm_op.cu 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
16
#ifdef __NVCC__
17
#include "cub/cub.cuh"
18 19 20 21 22
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#include "paddle/fluid/operators/p_norm_op.h"

namespace paddle {
namespace operators {

template <typename T>
__device__ __forceinline__ int sgn(T val) {
  return (T(0) < val) - (val < T(0));
}

__device__ __forceinline__ float inline_abs(float x) { return abs(x); }
__device__ __forceinline__ double inline_abs(double x) { return abs(x); }

__device__ __forceinline__ int inline_sign(float x) { return sgn<float>(x); }
__device__ __forceinline__ int inline_sign(double x) { return sgn<double>(x); }

__device__ __forceinline__ float inline_pow(float base, float exponent) {
  return pow(base, exponent);
}
__device__ __forceinline__ double inline_pow(double base, double exponent) {
  return pow(base, exponent);
}

template <typename T, int BlockDim>
__global__ void Pnorm(const T* x, const int pre,
                      const int axis_n,  // dim in axis
                      const int post, float porder, T* out_norm) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int num = pre * post;
53 54 55
  auto porder_t = static_cast<T>(porder);
  auto porder_inv = static_cast<T>(1.0 / porder);

56 57 58 59 60
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    int base = (i / post) * post * axis_n + (i % post);
    T sum = 0.0;
    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      const T x_ij = x[base + j * post];
61
      sum += inline_pow(inline_abs(x_ij), porder_t);
62 63
    }
    T reduce_result = BlockReduce(temp_storage).Sum(sum);
64 65 66
    if (threadIdx.x == 0) out_norm[i] = inline_pow(reduce_result, porder_inv);
  }
}
67

68 69 70 71 72 73 74 75 76 77 78 79 80
template <typename T, int BlockDim>
__global__ void ZeorNorm(const T* x, const int pre,
                         const int axis_n,  // dim in axis
                         const int post, T* out_norm) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int num = pre * post;
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    int base = (i / post) * post * axis_n + (i % post);
    T sum = 0.0;
    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      const T x_ij = x[base + j * post];
      sum += static_cast<T>(x_ij != 0);
81
    }
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    T reduce_result = BlockReduce(temp_storage).Sum(sum);
    if (threadIdx.x == 0) out_norm[i] = reduce_result;
  }
}

template <typename T, int BlockDim>
__global__ void InfNorm(const T* x, const int pre,
                        const int axis_n,  // dim in axis
                        const int post, T* out_norm) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int num = pre * post;
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    int base = (i / post) * post * axis_n + (i % post);
    T cur_max = inline_abs(x[base]);
    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      T x_ij_abs = inline_abs(x[base + j * post]);
      if (cur_max < x_ij_abs) cur_max = x_ij_abs;
    }
    T reduce_result = BlockReduce(temp_storage).Reduce(cur_max, cub::Max());
    if (threadIdx.x == 0) out_norm[i] = reduce_result;
  }
}

template <typename T, int BlockDim>
__global__ void NegInfNorm(const T* x, const int pre,
                           const int axis_n,  // dim in axis
                           const int post, T* out_norm) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int num = pre * post;
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    int base = (i / post) * post * axis_n + (i % post);
    T cur_min = inline_abs(x[base]);
    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      T x_ij_abs = inline_abs(x[base + j * post]);
      if (cur_min > x_ij_abs) cur_min = x_ij_abs;
    }
    T reduce_result = BlockReduce(temp_storage).Reduce(cur_min, cub::Min());
    if (threadIdx.x == 0) out_norm[i] = reduce_result;
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  }
}

template <typename DeviceContext, typename T>
class PnormCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* out_norm = ctx.Output<framework::Tensor>("Out");
    const T* x = in_x->data<T>();
    T* norm = out_norm->mutable_data<T>(ctx.GetPlace());

    auto xdim = in_x->dims();
    auto ndim = out_norm->dims();
    float porder = ctx.Attr<float>("porder");
    int axis = ctx.Attr<int>("axis");
myq406450149's avatar
myq406450149 已提交
138
    bool asvector = ctx.Attr<bool>("asvector");
139 140
    if (axis < 0) axis = xdim.size() + axis;
    int pre, n, post;
myq406450149's avatar
myq406450149 已提交
141
    GetDims(xdim, axis, &pre, &n, &post, asvector);
142 143 144 145 146 147 148

    auto& dev_ctx = ctx.cuda_device_context();

    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid = std::min(max_blocks, pre * post);
149 150 151 152 153 154 155 156 157 158 159 160 161
    if (porder == 0) {
      ZeorNorm<T, block><<<grid, block, 0, dev_ctx.stream()>>>(x, pre, n, post,
                                                               norm);
    } else if (porder == INFINITY) {
      InfNorm<T, block><<<grid, block, 0, dev_ctx.stream()>>>(x, pre, n, post,
                                                              norm);
    } else if (porder == -INFINITY) {
      NegInfNorm<T, block><<<grid, block, 0, dev_ctx.stream()>>>(x, pre, n,
                                                                 post, norm);
    } else {
      Pnorm<T, block><<<grid, block, 0, dev_ctx.stream()>>>(x, pre, n, post,
                                                            porder, norm);
    }
162 163 164 165 166 167 168 169 170 171
  }
};

template <typename T, int BlockDim>
__global__ void PnormGradient(const T* x, const T* x_norm, const T* y_grad,
                              const float porder, const int pre,
                              const int axis_n, const int post, const T eps,
                              T* x_grad) {
  // dx = (x/pnorm_broadcast).pow(p-1) * norm_dy.broadcast * sign(x)
  int num = pre * post;
172
  auto porder_grad = static_cast<T>(porder - 1.0f);
173
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
174 175
    __shared__ T pnorm_i;
    __shared__ T yout_i;
176 177 178 179

    auto base = (i / post) * post * axis_n + (i % post);

    if (threadIdx.x == 0) {
180 181
      pnorm_i = x_norm[i];
      yout_i = y_grad[i];
182
    }
183
    __syncthreads();
184 185 186 187

    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      int index = base + j * post;
      const T x_ij = inline_abs(x[index]);
188 189
      x_grad[index] = inline_pow(x_ij, porder_grad) /
                      (inline_pow(pnorm_i, porder_grad) + eps) * yout_i *
190 191 192 193 194
                      inline_sign(x[index]);
    }
  }
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
template <typename T, int BlockDim>
__global__ void InfNormGradient(const T* x, const T* x_norm, const T* y_grad,
                                const int pre, const int axis_n, const int post,
                                T* x_grad) {
  int num = pre * post;
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    __shared__ T pnorm_i;
    __shared__ T yout_i;
    auto base = (i / post) * post * axis_n + (i % post);
    if (threadIdx.x == 0) {
      pnorm_i = x_norm[i];
      yout_i = y_grad[i];
    }
    __syncthreads();

    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      int index = base + j * post;
      const T x_ij = inline_abs(x[index]);
      if (x_ij == pnorm_i) {
        x_grad[index] = inline_sign(x[index]) * yout_i;
      } else {
        x_grad[index] = static_cast<T>(0);
      }
    }
  }
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
template <typename DeviceContext, typename T, typename AttrType = T>
class PnormGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* in_norm = ctx.Input<framework::Tensor>("Out");
    auto* in_norm_dy =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    T* dx = out_dx->mutable_data<T>(ctx.GetPlace());
    const T* x = in_x->data<T>();
    const T* x_norm = in_norm->data<T>();
    const T* norm_dy = in_norm_dy->data<T>();

    auto xdim = in_x->dims();
    float porder = ctx.Attr<float>("porder");
    T eps = static_cast<T>(ctx.Attr<float>("epsilon"));
    int axis = ctx.Attr<int>("axis");
myq406450149's avatar
myq406450149 已提交
240
    bool asvector = ctx.Attr<bool>("asvector");
241 242
    if (axis < 0) axis = xdim.size() + axis;
    int pre, n, post;
myq406450149's avatar
myq406450149 已提交
243
    GetDims(xdim, axis, &pre, &n, &post, asvector);
244 245 246 247 248 249 250

    auto& dev_ctx = ctx.cuda_device_context();

    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid = std::min(max_blocks, pre * post);
251 252 253 254 255 256 257 258 259 260 261
    if (porder == 0) {
      math::SetConstant<DeviceContext, T> set_zero;
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      set_zero(dev_ctx, out_dx, static_cast<T>(0));
    } else if (porder == INFINITY || porder == -INFINITY) {
      InfNormGradient<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
          x, x_norm, norm_dy, pre, n, post, dx);
    } else {
      PnormGradient<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
          x, x_norm, norm_dy, porder, pre, n, post, eps, dx);
    }
262 263 264 265 266 267 268 269 270 271 272 273 274
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

REGISTER_OP_CUDA_KERNEL(p_norm, ops::PnormCUDAKernel<CUDA, float>,
                        ops::PnormCUDAKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(p_norm_grad, ops::PnormGradCUDAKernel<CUDA, float>,
                        ops::PnormGradCUDAKernel<CUDA, double>);