Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
e312a1ff
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e312a1ff
编写于
3月 03, 2021
作者:
Q
Qi Li
提交者:
GitHub
3月 03, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[ROCM] update fluid operators for rocm (part9), test=develop (#31338)
上级
6626c6a6
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
334 addition
and
104 deletion
+334
-104
paddle/fluid/operators/p_norm_op.cu
paddle/fluid/operators/p_norm_op.cu
+6
-0
paddle/fluid/operators/prroi_pool_op.cu
paddle/fluid/operators/prroi_pool_op.cu
+4
-23
paddle/fluid/operators/prroi_pool_op.h
paddle/fluid/operators/prroi_pool_op.h
+86
-45
paddle/fluid/operators/pull_box_sparse_op.h
paddle/fluid/operators/pull_box_sparse_op.h
+4
-2
paddle/fluid/operators/random_crop_op.h
paddle/fluid/operators/random_crop_op.h
+2
-2
paddle/fluid/operators/rank_attention.cu.h
paddle/fluid/operators/rank_attention.cu.h
+3
-3
paddle/fluid/operators/rank_attention_op.cu
paddle/fluid/operators/rank_attention_op.cu
+0
-1
paddle/fluid/operators/reshape_op.cc
paddle/fluid/operators/reshape_op.cc
+1
-1
paddle/fluid/operators/rnn_op.cu.cc
paddle/fluid/operators/rnn_op.cu.cc
+163
-16
paddle/fluid/operators/seed_op.cu
paddle/fluid/operators/seed_op.cu
+0
-1
paddle/fluid/operators/segment_pool_op.h
paddle/fluid/operators/segment_pool_op.h
+7
-1
paddle/fluid/operators/select_op_helper.h
paddle/fluid/operators/select_op_helper.h
+1
-1
paddle/fluid/operators/shuffle_batch_op.h
paddle/fluid/operators/shuffle_batch_op.h
+1
-1
paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.cu
...e/fluid/operators/sigmoid_cross_entropy_with_logits_op.cu
+6
-0
paddle/fluid/operators/softmax_cudnn_op.cu
paddle/fluid/operators/softmax_cudnn_op.cu
+41
-2
paddle/fluid/operators/softmax_op.cc
paddle/fluid/operators/softmax_op.cc
+6
-2
paddle/fluid/operators/split_selected_rows_op.h
paddle/fluid/operators/split_selected_rows_op.h
+1
-1
paddle/fluid/operators/strided_memcpy.h
paddle/fluid/operators/strided_memcpy.h
+1
-1
paddle/fluid/operators/strided_memcpy_test.cc
paddle/fluid/operators/strided_memcpy_test.cc
+1
-1
未找到文件。
paddle/fluid/operators/p_norm_op.cu
浏览文件 @
e312a1ff
...
...
@@ -13,7 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace
cub
=
hipcub
;
#endif
#include "paddle/fluid/operators/p_norm_op.h"
namespace
paddle
{
...
...
paddle/fluid/operators/prroi_pool_op.cu
浏览文件 @
e312a1ff
...
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/prroi_pool_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -29,22 +28,6 @@ static inline int NumBlocks(const int N) {
kNumMaximumNumBlocks
);
}
template
<
typename
T
>
DEVICE
void
PrRoIPoolingDistributeDiffCUDA
(
T
*
diff
,
const
T
top_diff
,
const
int
h
,
const
int
w
,
const
int
height
,
const
int
width
,
const
T
coeff
)
{
bool
overflow
=
(
h
<
0
)
||
(
w
<
0
)
||
(
h
>=
height
)
||
(
w
>=
width
);
if
(
!
overflow
)
{
paddle
::
platform
::
CudaAtomicAdd
(
diff
+
h
*
width
+
w
,
top_diff
*
coeff
);
}
}
template
<
typename
T
>
DEVICE
void
GPUAccumulateRois
(
T
*
offset
,
T
data
)
{
paddle
::
platform
::
CudaAtomicAdd
(
offset
,
data
);
}
template
<
typename
T
>
__global__
void
GPUPRROIPoolForward
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
input_rois
,
...
...
@@ -170,25 +153,23 @@ __global__ void GPUPRROIPoolBackward(
for
(
int
w_iter
=
s_w
;
w_iter
<
e_w
;
++
w_iter
)
{
for
(
int
h_iter
=
s_h
;
h_iter
<
e_h
;
++
h_iter
)
{
PrRoIPoolingMatDistributeDiff
(
PrRoIPoolingMatDistributeDiff
<
T
>
(
offset_input_grad_data
,
sum_out
,
h_iter
,
w_iter
,
h_iter
+
1
,
w_iter
+
1
,
max
(
win_start_h
,
static_cast
<
T
>
(
h_iter
)),
max
(
win_start_w
,
static_cast
<
T
>
(
w_iter
)),
min
(
win_end_h
,
static_cast
<
T
>
(
h_iter
)
+
static_cast
<
T
>
(
1.0
)),
min
(
win_end_w
,
static_cast
<
T
>
(
w_iter
)
+
static_cast
<
T
>
(
1.0
)),
height
,
width
,
PrRoIPoolingDistributeDiffCUDA
<
T
>
);
height
,
width
);
}
}
const
T
*
offset_out_data
=
out_data
+
i
;
const
T
*
offset_in_data
=
in_data
+
input_offset
;
PrRoIPoolingCoorBackward
(
PrRoIPoolingCoorBackward
<
T
>
(
s_w
,
e_w
,
s_h
,
e_h
,
width
,
height
,
win_start_w
,
win_start_h
,
win_end_w
,
win_end_h
,
pw
,
ph
,
pooled_width
,
pooled_height
,
win_size
,
spatial_scale
,
offset_in_data
,
offset_out_data
,
offset_input_roi_grad_data
,
offset_output_grad_data
,
GPUAccumulateRois
<
T
>
,
[](
const
T
x
,
const
T
y
)
{
return
max
(
x
,
y
);
},
[](
const
T
x
,
const
T
y
)
{
return
min
(
x
,
y
);
});
offset_output_grad_data
);
}
}
...
...
paddle/fluid/operators/prroi_pool_op.h
浏览文件 @
e312a1ff
...
...
@@ -16,6 +16,9 @@ limitations under the License. */
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/fluid/platform/cuda_primitives.h"
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -73,6 +76,17 @@ inline HOSTDEVICE T PrRoIPoolingMatCalculation(const T* this_data,
return
sum_out
;
}
#if defined(__NVCC__) || defined(__HIPCC__)
template
<
typename
T
>
DEVICE
void
PrRoIPoolingDistributeDiff
(
T
*
diff
,
const
T
top_diff
,
const
int
h
,
const
int
w
,
const
int
height
,
const
int
width
,
const
T
coeff
)
{
bool
overflow
=
(
h
<
0
)
||
(
w
<
0
)
||
(
h
>=
height
)
||
(
w
>=
width
);
if
(
!
overflow
)
{
paddle
::
platform
::
CudaAtomicAdd
(
diff
+
h
*
width
+
w
,
top_diff
*
coeff
);
}
}
#else
template
<
typename
T
>
inline
HOSTDEVICE
void
PrRoIPoolingDistributeDiff
(
T
*
diff
,
const
T
top_diff
,
const
int
h
,
const
int
w
,
...
...
@@ -84,12 +98,15 @@ inline HOSTDEVICE void PrRoIPoolingDistributeDiff(T* diff, const T top_diff,
*
(
diff
+
h
*
width
+
w
)
+=
top_diff
*
coeff
;
}
}
#endif
template
<
typename
T
,
typename
Functor
>
HOSTDEVICE
void
PrRoIPoolingMatDistributeDiff
(
T
*
diff
,
const
T
top_diff
,
const
int
s_h
,
const
int
s_w
,
const
int
e_h
,
const
int
e_w
,
const
T
y0
,
const
T
x0
,
const
T
y1
,
const
T
x1
,
const
int
h0
,
const
int
w0
,
Functor
functor
)
{
template
<
typename
T
>
HOSTDEVICE
void
PrRoIPoolingMatDistributeDiff
(
T
*
diff
,
const
T
top_diff
,
const
int
s_h
,
const
int
s_w
,
const
int
e_h
,
const
int
e_w
,
const
T
y0
,
const
T
x0
,
const
T
y1
,
const
T
x1
,
const
int
h0
,
const
int
w0
)
{
T
alpha
,
beta
,
lim_alpha
,
lim_beta
,
tmp
;
alpha
=
x0
-
static_cast
<
T
>
(
s_w
);
...
...
@@ -99,14 +116,14 @@ HOSTDEVICE void PrRoIPoolingMatDistributeDiff(
tmp
=
(
lim_alpha
-
0.5
f
*
lim_alpha
*
lim_alpha
-
alpha
+
0.5
f
*
alpha
*
alpha
)
*
(
lim_beta
-
0.5
f
*
lim_beta
*
lim_beta
-
beta
+
0.5
f
*
beta
*
beta
);
functor
(
diff
,
top_diff
,
s_h
,
s_w
,
h0
,
w0
,
tmp
);
PrRoIPoolingDistributeDiff
<
T
>
(
diff
,
top_diff
,
s_h
,
s_w
,
h0
,
w0
,
tmp
);
alpha
=
static_cast
<
T
>
(
e_w
)
-
x1
;
lim_alpha
=
static_cast
<
T
>
(
e_w
)
-
x0
;
tmp
=
(
lim_alpha
-
0.5
f
*
lim_alpha
*
lim_alpha
-
alpha
+
0.5
f
*
alpha
*
alpha
)
*
(
lim_beta
-
0.5
f
*
lim_beta
*
lim_beta
-
beta
+
0.5
f
*
beta
*
beta
);
functor
(
diff
,
top_diff
,
s_h
,
e_w
,
h0
,
w0
,
tmp
);
PrRoIPoolingDistributeDiff
<
T
>
(
diff
,
top_diff
,
s_h
,
e_w
,
h0
,
w0
,
tmp
);
alpha
=
x0
-
static_cast
<
T
>
(
s_w
);
beta
=
static_cast
<
T
>
(
e_h
)
-
y1
;
...
...
@@ -115,20 +132,47 @@ HOSTDEVICE void PrRoIPoolingMatDistributeDiff(
tmp
=
(
lim_alpha
-
0.5
f
*
lim_alpha
*
lim_alpha
-
alpha
+
0.5
f
*
alpha
*
alpha
)
*
(
lim_beta
-
0.5
f
*
lim_beta
*
lim_beta
-
beta
+
0.5
f
*
beta
*
beta
);
functor
(
diff
,
top_diff
,
e_h
,
s_w
,
h0
,
w0
,
tmp
);
PrRoIPoolingDistributeDiff
<
T
>
(
diff
,
top_diff
,
e_h
,
s_w
,
h0
,
w0
,
tmp
);
alpha
=
static_cast
<
T
>
(
e_w
)
-
x1
;
lim_alpha
=
static_cast
<
T
>
(
e_w
)
-
x0
;
tmp
=
(
lim_alpha
-
0.5
f
*
lim_alpha
*
lim_alpha
-
alpha
+
0.5
f
*
alpha
*
alpha
)
*
(
lim_beta
-
0.5
f
*
lim_beta
*
lim_beta
-
beta
+
0.5
f
*
beta
*
beta
);
functor
(
diff
,
top_diff
,
e_h
,
e_w
,
h0
,
w0
,
tmp
);
PrRoIPoolingDistributeDiff
<
T
>
(
diff
,
top_diff
,
e_h
,
e_w
,
h0
,
w0
,
tmp
);
}
#if defined(__NVCC__) || defined(__HIPCC__)
template
<
typename
T
>
DEVICE
void
AccumulateRois
(
T
*
offset
,
T
data
)
{
paddle
::
platform
::
CudaAtomicAdd
(
offset
,
data
);
}
#else
template
<
typename
T
>
inline
HOSTDEVICE
void
CPU
AccumulateRois
(
T
*
offset
,
T
data
)
{
inline
HOSTDEVICE
void
AccumulateRois
(
T
*
offset
,
T
data
)
{
*
offset
+=
data
;
}
#endif
#if defined(__NVCC__) || defined(__HIPCC__)
template
<
typename
T
>
DEVICE
T
MaxFunctor
(
const
T
x
,
const
T
y
)
{
return
max
(
x
,
y
);
}
template
<
typename
T
>
DEVICE
T
MinFunctor
(
const
T
x
,
const
T
y
)
{
return
min
(
x
,
y
);
}
#else
template
<
typename
T
>
inline
HOSTDEVICE
T
MaxFunctor
(
const
T
x
,
const
T
y
)
{
return
std
::
max
(
x
,
y
);
}
template
<
typename
T
>
inline
HOSTDEVICE
T
MinFunctor
(
const
T
x
,
const
T
y
)
{
return
std
::
max
(
x
,
y
);
}
#endif
template
<
typename
T
>
inline
HOSTDEVICE
static
T
PrRoIPoolingGetCoeff
(
T
dh
,
T
dw
)
{
...
...
@@ -172,15 +216,13 @@ inline HOSTDEVICE T PrRoIPoolingSingleCoorIntegral(T s, T t, T c1, T c2) {
(
t
-
0.5
f
*
t
*
t
-
s
+
0.5
f
*
s
*
s
)
*
c1
;
}
template
<
typename
T
,
typename
Functor
,
typename
MaxFunctor
,
typename
MinFunctor
>
template
<
typename
T
>
inline
HOSTDEVICE
void
PrRoIPoolingCoorBackward
(
int
s_w
,
int
e_w
,
int
s_h
,
int
e_h
,
int
width
,
int
height
,
T
win_start_w
,
T
win_start_h
,
T
win_end_w
,
T
win_end_h
,
int
pw
,
int
ph
,
const
int
pooled_width
,
const
int
pooled_height
,
T
win_size
,
const
float
spatial_scale
,
const
T
*
this_bottom_data
,
const
T
*
this_top_data
,
T
*
this_data_grad
,
const
T
*
this_out_grad
,
Functor
functor
,
MaxFunctor
maxFunctor
,
MinFunctor
minFunctor
)
{
const
T
*
this_top_data
,
T
*
this_data_grad
,
const
T
*
this_out_grad
)
{
T
g_x1_y
=
0.
f
;
T
g_x2_y
=
0.
f
;
T
g_x_y1
=
0.
f
;
...
...
@@ -188,16 +230,16 @@ inline HOSTDEVICE void PrRoIPoolingCoorBackward(
for
(
int
h_iter
=
s_h
;
h_iter
<
e_h
;
++
h_iter
)
{
g_x1_y
+=
PrRoIPoolingSingleCoorIntegral
(
maxFunctor
(
win_start_h
,
static_cast
<
T
>
(
h_iter
))
-
h_iter
,
minFunctor
(
win_end_h
,
static_cast
<
T
>
(
h_iter
+
1
))
-
h_iter
,
MaxFunctor
<
T
>
(
win_start_h
,
static_cast
<
T
>
(
h_iter
))
-
h_iter
,
MinFunctor
<
T
>
(
win_end_h
,
static_cast
<
T
>
(
h_iter
+
1
))
-
h_iter
,
PrRoIPoolingInterpolation
(
this_bottom_data
,
h_iter
,
win_start_w
,
height
,
width
),
PrRoIPoolingInterpolation
(
this_bottom_data
,
h_iter
+
1
,
win_start_w
,
height
,
width
));
g_x2_y
+=
PrRoIPoolingSingleCoorIntegral
(
maxFunctor
(
win_start_h
,
static_cast
<
T
>
(
h_iter
))
-
h_iter
,
minFunctor
(
win_end_h
,
static_cast
<
T
>
(
h_iter
+
1
))
-
h_iter
,
MaxFunctor
<
T
>
(
win_start_h
,
static_cast
<
T
>
(
h_iter
))
-
h_iter
,
MinFunctor
<
T
>
(
win_end_h
,
static_cast
<
T
>
(
h_iter
+
1
))
-
h_iter
,
PrRoIPoolingInterpolation
(
this_bottom_data
,
h_iter
,
win_end_w
,
height
,
width
),
PrRoIPoolingInterpolation
(
this_bottom_data
,
h_iter
+
1
,
win_end_w
,
...
...
@@ -206,16 +248,16 @@ inline HOSTDEVICE void PrRoIPoolingCoorBackward(
for
(
int
w_iter
=
s_w
;
w_iter
<
e_w
;
++
w_iter
)
{
g_x_y1
+=
PrRoIPoolingSingleCoorIntegral
(
maxFunctor
(
win_start_w
,
static_cast
<
T
>
(
w_iter
))
-
w_iter
,
minFunctor
(
win_end_w
,
static_cast
<
T
>
(
w_iter
+
1
))
-
w_iter
,
MaxFunctor
<
T
>
(
win_start_w
,
static_cast
<
T
>
(
w_iter
))
-
w_iter
,
MinFunctor
<
T
>
(
win_end_w
,
static_cast
<
T
>
(
w_iter
+
1
))
-
w_iter
,
PrRoIPoolingInterpolation
(
this_bottom_data
,
win_start_h
,
w_iter
,
height
,
width
),
PrRoIPoolingInterpolation
(
this_bottom_data
,
win_start_h
,
w_iter
+
1
,
height
,
width
));
g_x_y2
+=
PrRoIPoolingSingleCoorIntegral
(
maxFunctor
(
win_start_w
,
static_cast
<
T
>
(
w_iter
))
-
w_iter
,
minFunctor
(
win_end_w
,
static_cast
<
T
>
(
w_iter
+
1
))
-
w_iter
,
MaxFunctor
<
T
>
(
win_start_w
,
static_cast
<
T
>
(
w_iter
))
-
w_iter
,
MinFunctor
<
T
>
(
win_end_w
,
static_cast
<
T
>
(
w_iter
+
1
))
-
w_iter
,
PrRoIPoolingInterpolation
(
this_bottom_data
,
win_end_h
,
w_iter
,
height
,
width
),
PrRoIPoolingInterpolation
(
this_bottom_data
,
win_end_h
,
w_iter
+
1
,
...
...
@@ -232,22 +274,24 @@ inline HOSTDEVICE void PrRoIPoolingCoorBackward(
partial_y1
=
partial_y1
/
win_size
*
spatial_scale
;
partial_y2
=
partial_y2
/
win_size
*
spatial_scale
;
functor
(
this_data_grad
+
0
,
(
partial_x1
*
(
1.0
-
static_cast
<
T
>
(
pw
)
/
pooled_width
)
+
partial_x2
*
(
1.0
-
static_cast
<
T
>
(
pw
+
1
)
/
pooled_width
))
*
(
*
this_out_grad
));
functor
(
this_data_grad
+
1
,
(
partial_y1
*
(
1.0
-
static_cast
<
T
>
(
ph
)
/
pooled_height
)
+
partial_y2
*
(
1.0
-
static_cast
<
T
>
(
ph
+
1
)
/
pooled_height
))
*
(
*
this_out_grad
));
functor
(
this_data_grad
+
2
,
(
partial_x2
*
static_cast
<
T
>
(
pw
+
1
)
/
pooled_width
+
partial_x1
*
static_cast
<
T
>
(
pw
)
/
pooled_width
)
*
(
*
this_out_grad
));
functor
(
this_data_grad
+
3
,
(
partial_y2
*
static_cast
<
T
>
(
ph
+
1
)
/
pooled_height
+
partial_y1
*
static_cast
<
T
>
(
ph
)
/
pooled_height
)
*
(
*
this_out_grad
));
AccumulateRois
<
T
>
(
this_data_grad
+
0
,
(
partial_x1
*
(
1.0
-
static_cast
<
T
>
(
pw
)
/
pooled_width
)
+
partial_x2
*
(
1.0
-
static_cast
<
T
>
(
pw
+
1
)
/
pooled_width
))
*
(
*
this_out_grad
));
AccumulateRois
<
T
>
(
this_data_grad
+
1
,
(
partial_y1
*
(
1.0
-
static_cast
<
T
>
(
ph
)
/
pooled_height
)
+
partial_y2
*
(
1.0
-
static_cast
<
T
>
(
ph
+
1
)
/
pooled_height
))
*
(
*
this_out_grad
));
AccumulateRois
<
T
>
(
this_data_grad
+
2
,
(
partial_x2
*
static_cast
<
T
>
(
pw
+
1
)
/
pooled_width
+
partial_x1
*
static_cast
<
T
>
(
pw
)
/
pooled_width
)
*
(
*
this_out_grad
));
AccumulateRois
<
T
>
(
this_data_grad
+
3
,
(
partial_y2
*
static_cast
<
T
>
(
ph
+
1
)
/
pooled_height
+
partial_y1
*
static_cast
<
T
>
(
ph
)
/
pooled_height
)
*
(
*
this_out_grad
));
}
template
<
typename
DeviceContext
,
typename
T
>
...
...
@@ -516,7 +560,7 @@ class CPUPRROIPoolGradOpKernel : public framework::OpKernel<T> {
for
(
int
w_iter
=
s_w
;
w_iter
<
e_w
;
++
w_iter
)
{
for
(
int
h_iter
=
s_h
;
h_iter
<
e_h
;
++
h_iter
)
{
PrRoIPoolingMatDistributeDiff
(
PrRoIPoolingMatDistributeDiff
<
T
>
(
offset_input_grad_data
,
sum_out
,
h_iter
,
w_iter
,
h_iter
+
1
,
w_iter
+
1
,
std
::
max
(
win_start_h
,
static_cast
<
T
>
(
h_iter
)),
std
::
max
(
win_start_w
,
static_cast
<
T
>
(
w_iter
)),
...
...
@@ -524,19 +568,16 @@ class CPUPRROIPoolGradOpKernel : public framework::OpKernel<T> {
static_cast
<
T
>
(
h_iter
)
+
static_cast
<
T
>
(
1.0
)),
std
::
min
(
win_end_w
,
static_cast
<
T
>
(
w_iter
)
+
static_cast
<
T
>
(
1.0
)),
height
,
width
,
PrRoIPoolingDistributeDiff
<
T
>
);
height
,
width
);
}
}
const
T
*
offset_in_data
=
in_data
+
input_offset
;
PrRoIPoolingCoorBackward
(
PrRoIPoolingCoorBackward
<
T
>
(
s_w
,
e_w
,
s_h
,
e_h
,
width
,
height
,
win_start_w
,
win_start_h
,
win_end_w
,
win_end_h
,
pw
,
ph
,
pooled_width
,
pooled_height
,
win_size
,
spatial_scale
,
offset_in_data
,
offset_out_data
,
offset_input_roi_grad_data
,
offset_output_grad_data
,
CPUAccumulateRois
<
T
>
,
[](
const
T
x
,
const
T
y
)
{
return
std
::
max
(
x
,
y
);
},
[](
const
T
x
,
const
T
y
)
{
return
std
::
min
(
x
,
y
);
});
offset_input_roi_grad_data
,
offset_output_grad_data
);
}
}
}
...
...
paddle/fluid/operators/pull_box_sparse_op.h
浏览文件 @
e312a1ff
...
...
@@ -47,7 +47,8 @@ static void PullBoxSparseFunctor(const framework::ExecutionContext &ctx) {
box_ptr
->
PullSparse
(
ctx
.
GetPlace
(),
all_keys
,
all_values
,
slot_lengths
,
hidden_size
,
0
);
#endif
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
(defined PADDLE_WITH_PSLIB)
auto
hidden_size
=
ctx
.
Attr
<
int
>
(
"size"
);
auto
gpu_ps_ptr
=
paddle
::
framework
::
PSGPUWrapper
::
GetInstance
();
gpu_ps_ptr
->
PullSparse
(
ctx
.
GetPlace
(),
0
,
all_keys
,
all_values
,
slot_lengths
,
...
...
@@ -90,7 +91,8 @@ static void PushBoxSparseFunctor(const framework::ExecutionContext &ctx) {
box_ptr
->
PushSparseGrad
(
ctx
.
GetPlace
(),
all_keys
,
all_grad_values
,
slot_lengths
,
hidden_size
,
0
,
batch_size
);
#endif
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
(defined PADDLE_WITH_PSLIB)
auto
hidden_size
=
ctx
.
Attr
<
int
>
(
"size"
);
auto
gpu_ps_ptr
=
paddle
::
framework
::
PSGPUWrapper
::
GetInstance
();
gpu_ps_ptr
->
PushSparseGrad
(
ctx
.
GetPlace
(),
0
,
all_keys
,
all_grad_values
,
...
...
paddle/fluid/operators/random_crop_op.h
浏览文件 @
e312a1ff
...
...
@@ -18,7 +18,7 @@
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include <thrust/random.h>
#endif
...
...
@@ -36,7 +36,7 @@ struct Random<platform::CPUDeviceContext> {
using
UniformIntDist
=
std
::
uniform_int_distribution
<
T
>
;
};
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template
<
>
struct
Random
<
platform
::
CUDADeviceContext
>
{
using
Engine
=
thrust
::
minstd_rand
;
...
...
paddle/fluid/operators/rank_attention.cu.h
浏览文件 @
e312a1ff
...
...
@@ -50,7 +50,7 @@ __global__ void expand_input_by_rank_kernel(
}
template
<
typename
T
>
void
expand_rank_attention_input
(
cuda
Stream_t
stream
,
const
T
*
input
,
void
expand_rank_attention_input
(
gpu
Stream_t
stream
,
const
T
*
input
,
int
input_row
,
int
input_col
,
T
*
output
,
int
output_row
,
int
output_col
,
const
int
*
rank_offset
,
int
rank_offset_row
,
...
...
@@ -93,7 +93,7 @@ __global__ void expand_rank_attention_param_kernel(
}
template
<
typename
T
>
void
expand_rank_attention_param
(
cuda
Stream_t
stream
,
const
T
*
input
,
void
expand_rank_attention_param
(
gpu
Stream_t
stream
,
const
T
*
input
,
int
input_row
,
int
input_col
,
const
int
*
rank_offset
,
int
rank_offset_row
,
int
rank_offset_col
,
const
T
*
param
,
...
...
@@ -133,7 +133,7 @@ __global__ void merge_param_gradient_kernel(
}
template
<
typename
T
>
void
merge_rank_attention_param_grad
(
cuda
Stream_t
stream
,
T
*
expanded_grad
,
void
merge_rank_attention_param_grad
(
gpu
Stream_t
stream
,
T
*
expanded_grad
,
int
expanded_grad_row
,
int
expanded_grad_col
,
T
*
param_grad
,
int
param_grad_row
,
int
param_grad_col
,
...
...
paddle/fluid/operators/rank_attention_op.cu
浏览文件 @
e312a1ff
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cublas.h>
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/math/blas.h"
...
...
paddle/fluid/operators/reshape_op.cc
浏览文件 @
e312a1ff
...
...
@@ -654,7 +654,7 @@ REGISTER_OP_CPU_KERNEL_FUNCTOR(
ops
::
ReshapeDoubleGradKernel
,
paddle
::
platform
::
complex128
,
ops
::
ReshapeDoubleGradKernel
);
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
REGISTER_OP_CUDA_KERNEL_FUNCTOR
(
reshape
,
float
,
ops
::
ReshapeKernel
,
double
,
ops
::
ReshapeKernel
,
int
,
ops
::
ReshapeKernel
,
uint8_t
,
ops
::
ReshapeKernel
,
int64_t
,
...
...
paddle/fluid/operators/rnn_op.cu.cc
浏览文件 @
e312a1ff
...
...
@@ -16,7 +16,12 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/utils.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -28,7 +33,11 @@ class RNNDescriptors {
public:
RNNDescriptors
(
int
seq_length
,
int
batch_size
,
int
input_size
,
int
hidden_size
,
int
num_layers
,
float
dropout_prob
,
int
seed
,
#ifdef PADDLE_WITH_HIP
int
weight_numel
,
miopenRNNMode_t
mode
,
bool
is_bidirec
,
#else
int
weight_numel
,
cudnnRNNMode_t
mode
,
bool
is_bidirec
,
#endif
bool
is_test
)
:
seq_length_
(
seq_length
),
batch_size_
(
batch_size
),
...
...
@@ -40,15 +49,23 @@ class RNNDescriptors {
weight_numel_
(
weight_numel
),
mode_
(
mode
),
is_bidirec_
(
is_bidirec
),
is_test_
(
is_test
)
{}
is_test_
(
is_test
)
{
}
template
<
typename
T
>
#ifdef PADDLE_WITH_HIP
void
Create
(
const
miopenHandle_t
&
handle
,
const
platform
::
Place
&
place
,
#else
void
Create
(
const
cudnnHandle_t
&
handle
,
const
platform
::
Place
&
place
,
#endif
const
std
::
vector
<
int
>
&
sequence_length
,
size_t
*
workspace_size
,
size_t
*
reserve_size
,
framework
::
Tensor
*
dropout_state
)
{
int
numDirections
=
is_bidirec_
?
2
:
1
;
#ifdef PADDLE_WITH_HIP
miopenDataType_t
cudnn_type
=
platform
::
CudnnDataType
<
T
>::
type
;
#else
cudnnDataType_t
cudnn_type
=
platform
::
CudnnDataType
<
T
>::
type
;
#endif
// ------------------- cudnn x, y descriptors ---------------------
std
::
vector
<
int
>
dims_x
=
{
batch_size_
,
input_size_
,
1
};
std
::
vector
<
int
>
strides_x
=
{
input_size_
,
1
,
1
};
...
...
@@ -59,7 +76,7 @@ class RNNDescriptors {
y_descs_
.
emplace_back
(
y_desc_
.
descriptor
<
T
>
(
dims_y
,
strides_y
));
}
#if CUDNN_VERSION >= 7201
#if
defined(PADDLE_WITH_CUDA) &&
CUDNN_VERSION >= 7201
if
(
!
sequence_length
.
empty
())
{
x_seq_desc_
.
descriptor
<
T
>
(
seq_length_
,
batch_size_
,
input_size_
,
true
,
sequence_length
);
...
...
@@ -82,17 +99,29 @@ class RNNDescriptors {
size_t
state_size
;
bool
is_initialized
=
dropout_state
->
IsInitialized
();
if
(
!
is_test_
&&
!
is_initialized
)
{
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenDropoutGetStatesSize
(
handle
,
&
state_size
));
dropout_state
->
mutable_data
<
uint8_t
>
({
static_cast
<
int64_t
>
(
state_size
)},
place
);
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnDropoutGetStatesSize
(
handle
,
&
state_size
));
dropout_state
->
mutable_data
<
uint8_t
>
({
static_cast
<
int64_t
>
(
state_size
)},
place
);
#endif
}
dropout_desc_
.
descriptor
(
handle
,
place
,
is_initialized
,
dropout_prob_
,
is_test_
?
nullptr
:
dropout_state
,
seed_
,
state_size
);
// ------------------- cudnn rnn descriptors ---------------------
#if CUDNN_VERSION >= 6000
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenSetRNNDescriptor
(
rnn_desc_
.
desc
(),
hidden_size_
,
num_layers_
,
miopenRNNlinear
,
is_bidirec_
?
miopenRNNbidirection
:
miopenRNNunidirection
,
mode_
,
miopenRNNNoBias
,
miopenRNNdefault
,
cudnn_type
));
#elif CUDNN_VERSION >= 6000
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnSetRNNDescriptor_v6
(
handle
,
rnn_desc_
.
desc
(),
hidden_size_
,
num_layers_
,
dropout_desc_
.
desc
(),
CUDNN_LINEAR_INPUT
,
...
...
@@ -106,7 +135,7 @@ class RNNDescriptors {
cudnn_type
));
#endif
#if CUDNN_VERSION >= 7201
#if
defined(PADDLE_WITH_CUDA) &&
CUDNN_VERSION >= 7201
if
(
!
sequence_length
.
empty
())
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnSetRNNPaddingMode
(
rnn_desc_
.
desc
(),
CUDNN_RNN_PADDED_IO_ENABLED
));
...
...
@@ -115,8 +144,13 @@ class RNNDescriptors {
// ------------------- cudnn weights_size ---------------------
size_t
weights_size_
;
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenGetRNNParamsSize
(
handle
,
rnn_desc_
.
desc
(),
x_descs_
[
0
],
&
weights_size_
,
cudnn_type
));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnGetRNNParamsSize
(
handle
,
rnn_desc_
.
desc
(),
x_descs_
[
0
],
&
weights_size_
,
cudnn_type
));
#endif
PADDLE_ENFORCE_EQ
(
weights_size_
,
sizeof
(
T
)
*
weight_numel_
,
platform
::
errors
::
InvalidArgument
(
...
...
@@ -126,7 +160,16 @@ class RNNDescriptors {
int
dim_tmp
=
weights_size_
/
sizeof
(
T
);
std
::
vector
<
int
>
dim_w
=
{
dim_tmp
,
1
,
1
};
weight_desc_
.
descriptor
<
T
>
(
layout
,
dim_w
);
// ------------------- cudnn workspace, reserve size ---------------------
// ------------------- cudnn workspace, reserve size ---------------------
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenGetRNNWorkspaceSize
(
handle
,
rnn_desc_
.
desc
(),
seq_length_
,
x_descs_
.
data
(),
workspace_size
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenGetRNNTrainingReserveSize
(
handle
,
rnn_desc_
.
desc
(),
seq_length_
,
x_descs_
.
data
(),
reserve_size
));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnGetRNNWorkspaceSize
(
handle
,
rnn_desc_
.
desc
(),
seq_length_
,
x_descs_
.
data
(),
workspace_size
));
...
...
@@ -134,7 +177,19 @@ class RNNDescriptors {
platform
::
dynload
::
cudnnGetRNNTrainingReserveSize
(
handle
,
rnn_desc_
.
desc
(),
seq_length_
,
x_descs_
.
data
(),
reserve_size
));
#endif
}
#ifdef PADDLE_WITH_HIP
miopenTensorDescriptor_t
*
x_descs
()
{
return
x_descs_
.
data
();
}
miopenTensorDescriptor_t
*
y_descs
()
{
return
y_descs_
.
data
();
}
miopenTensorDescriptor_t
init_h_desc
()
{
return
init_h_desc_
.
desc
();
}
miopenTensorDescriptor_t
init_c_desc
()
{
return
init_c_desc_
.
desc
();
}
miopenTensorDescriptor_t
last_h_desc
()
{
return
last_h_desc_
.
desc
();
}
miopenTensorDescriptor_t
last_c_desc
()
{
return
last_c_desc_
.
desc
();
}
miopenRNNDescriptor_t
rnn_desc
()
{
return
rnn_desc_
.
desc
();
}
miopenDropoutDescriptor_t
dropout_desc
()
{
return
dropout_desc_
.
desc
();
}
miopenTensorDescriptor_t
weight_desc
()
{
return
weight_desc_
.
desc
();
}
#else
cudnnTensorDescriptor_t
*
x_descs
()
{
return
x_descs_
.
data
();
}
cudnnTensorDescriptor_t
*
y_descs
()
{
return
y_descs_
.
data
();
}
#if CUDNN_VERSION >= 7201
...
...
@@ -148,6 +203,7 @@ class RNNDescriptors {
cudnnRNNDescriptor_t
rnn_desc
()
{
return
rnn_desc_
.
desc
();
}
cudnnDropoutDescriptor_t
dropout_desc
()
{
return
dropout_desc_
.
desc
();
}
cudnnFilterDescriptor_t
weight_desc
()
{
return
weight_desc_
.
desc
();
}
#endif
private:
int
seq_length_
;
...
...
@@ -158,15 +214,24 @@ class RNNDescriptors {
float
dropout_prob_
;
int
seed_
;
int
weight_numel_
;
#ifdef PADDLE_WITH_HIP
miopenRNNMode_t
mode_
;
#else
cudnnRNNMode_t
mode_
;
#endif
bool
is_bidirec_
;
bool
is_test_
;
#ifdef PADDLE_WITH_HIP
std
::
vector
<
miopenTensorDescriptor_t
>
x_descs_
;
std
::
vector
<
miopenTensorDescriptor_t
>
y_descs_
;
#else
std
::
vector
<
cudnnTensorDescriptor_t
>
x_descs_
;
std
::
vector
<
cudnnTensorDescriptor_t
>
y_descs_
;
#endif
platform
::
ScopedTensorDescriptor
x_desc_
;
platform
::
ScopedTensorDescriptor
y_desc_
;
#if CUDNN_VERSION >= 7201
#if
defined(PADDLE_WITH_CUDA) &&
CUDNN_VERSION >= 7201
platform
::
ScopedRNNTensorDescriptor
x_seq_desc_
;
platform
::
ScopedRNNTensorDescriptor
y_seq_desc_
;
#endif
...
...
@@ -193,7 +258,7 @@ bool is_continuous(const Type &weight_list) {
}
template
<
typename
T
>
void
weight_to_tensor
(
const
platform
::
Place
&
place
,
cuda
Stream_t
stream
,
void
weight_to_tensor
(
const
platform
::
Place
&
place
,
gpu
Stream_t
stream
,
const
std
::
vector
<
const
Tensor
*>
&
weight_list
,
Tensor
*
weight
)
{
auto
weight_data
=
weight
->
data
<
T
>
();
...
...
@@ -211,7 +276,7 @@ void weight_to_tensor(const platform::Place &place, cudaStream_t stream,
}
template
<
typename
T
>
void
weight_to_tensor_list
(
const
platform
::
Place
&
place
,
cuda
Stream_t
stream
,
void
weight_to_tensor_list
(
const
platform
::
Place
&
place
,
gpu
Stream_t
stream
,
std
::
vector
<
Tensor
*>
*
weight_grad
,
const
std
::
vector
<
const
Tensor
*>
&
weight_input
,
const
Tensor
*
weight
)
{
...
...
@@ -247,6 +312,17 @@ class RNNCudnnKernel : public framework::OpKernel<T> {
int
hidden_size
=
ctx
.
Attr
<
int
>
(
"hidden_size"
);
int
num_layers
=
ctx
.
Attr
<
int
>
(
"num_layers"
);
auto
mode
=
ctx
.
Attr
<
std
::
string
>
(
"mode"
);
#ifdef PADDLE_WITH_HIP
miopenRNNMode_t
rnn_mode
=
miopenLSTM
;
if
(
mode
==
"LSTM"
)
rnn_mode
=
miopenLSTM
;
else
if
(
mode
==
"GRU"
)
rnn_mode
=
miopenGRU
;
else
if
(
mode
==
"RNN_RELU"
)
rnn_mode
=
miopenRNNRELU
;
else
if
(
mode
==
"RNN_TANH"
)
rnn_mode
=
miopenRNNTANH
;
#else
cudnnRNNMode_t
rnn_mode
=
CUDNN_LSTM
;
if
(
mode
==
"LSTM"
)
rnn_mode
=
CUDNN_LSTM
;
...
...
@@ -256,6 +332,7 @@ class RNNCudnnKernel : public framework::OpKernel<T> {
rnn_mode
=
CUDNN_RNN_RELU
;
else
if
(
mode
==
"RNN_TANH"
)
rnn_mode
=
CUDNN_RNN_TANH
;
#endif
else
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"rnn_mode should be LSTM, GRU, RNN_RELU or RNN_TANH, but received: "
...
...
@@ -285,7 +362,11 @@ class RNNCudnnKernel : public framework::OpKernel<T> {
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
last_h_data
=
state
[
0
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
last_c_data
=
nullptr
;
#ifdef PADDLE_WITH_HIP
if
(
rnn_mode
==
miopenLSTM
)
{
#else
if
(
rnn_mode
==
CUDNN_LSTM
)
{
#endif
init_c_data
=
pre_state
[
1
]
->
data
<
T
>
();
last_c_data
=
state
[
1
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
...
...
@@ -362,8 +443,17 @@ class RNNCudnnKernel : public framework::OpKernel<T> {
&
workspace_data_
,
workspace_size
);
}
else
{
if
(
!
has_seq_length
)
{
// for train
// This interface is used when the input/output is unpadded.
// for train
// This interface is used when the input/output is unpadded.
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenRNNForwardTraining
(
handle
,
rnn
.
rnn_desc
(),
seq_length
,
rnn
.
x_descs
(),
x_data
,
rnn
.
init_h_desc
(),
init_h_data
,
rnn
.
init_c_desc
(),
init_c_data
,
rnn
.
weight_desc
(),
w_data
,
rnn
.
y_descs
(),
out_data
,
rnn
.
last_h_desc
(),
last_h_data
,
rnn
.
last_c_desc
(),
last_c_data
,
workspace_data_
.
data
<
uint8_t
>
(),
workspace_size
,
reserve_data
,
reserve_size
));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnRNNForwardTraining
(
handle
,
rnn
.
rnn_desc
(),
seq_length
,
rnn
.
x_descs
(),
x_data
,
rnn
.
init_h_desc
(),
init_h_data
,
rnn
.
init_c_desc
(),
init_c_data
,
...
...
@@ -371,8 +461,9 @@ class RNNCudnnKernel : public framework::OpKernel<T> {
rnn
.
last_h_desc
(),
last_h_data
,
rnn
.
last_c_desc
(),
last_c_data
,
workspace_data_
.
data
<
uint8_t
>
(),
workspace_size
,
reserve_data
,
reserve_size
));
#endif
}
else
{
#if CUDNN_VERSION >= 7201
#if
defined(PADDLE_WITH_CUDA) &&
CUDNN_VERSION >= 7201
// for train
// This interface is used when the input/output is padded.
PADDLE_ENFORCE_CUDA_SUCCESS
(
...
...
@@ -394,23 +485,36 @@ class RNNCudnnKernel : public framework::OpKernel<T> {
}
}
#ifdef PADDLE_WITH_HIP
void
RNNInferece
(
const
bool
&
has_seq_length
,
const
miopenHandle_t
&
handle
,
#else
void
RNNInferece
(
const
bool
&
has_seq_length
,
const
cudnnHandle_t
&
handle
,
#endif
const
int
&
seq_length
,
RNNDescriptors
*
rnn
,
const
T
*
x_data
,
const
T
*
init_h_data
,
const
T
*
init_c_data
,
const
T
*
w_data
,
T
*
out_data
,
T
*
last_h_data
,
T
*
last_c_data
,
framework
::
Tensor
*
workspace_data
,
const
size_t
&
workspace_size
)
const
{
if
(
!
has_seq_length
)
{
// for inference
// This interface is used when the input/output is unpadded.
// for inference
// This interface is used when the input/output is unpadded.
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenRNNForwardInference
(
handle
,
rnn
->
rnn_desc
(),
seq_length
,
rnn
->
x_descs
(),
x_data
,
rnn
->
init_h_desc
(),
init_h_data
,
rnn
->
init_c_desc
(),
init_c_data
,
rnn
->
weight_desc
(),
w_data
,
rnn
->
y_descs
(),
out_data
,
rnn
->
last_h_desc
(),
last_h_data
,
rnn
->
last_c_desc
(),
last_c_data
,
workspace_data
->
data
<
uint8_t
>
(),
workspace_size
));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnRNNForwardInference
(
handle
,
rnn
->
rnn_desc
(),
seq_length
,
rnn
->
x_descs
(),
x_data
,
rnn
->
init_h_desc
(),
init_h_data
,
rnn
->
init_c_desc
(),
init_c_data
,
rnn
->
weight_desc
(),
w_data
,
rnn
->
y_descs
(),
out_data
,
rnn
->
last_h_desc
(),
last_h_data
,
rnn
->
last_c_desc
(),
last_c_data
,
workspace_data
->
data
<
uint8_t
>
(),
workspace_size
));
#endif
}
else
{
#if CUDNN_VERSION >= 7201
#if
defined(PADDLE_WITH_CUDA) &&
CUDNN_VERSION >= 7201
// for inference
// This interface is used when the input/output is padded.
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnRNNForwardInferenceEx
(
...
...
@@ -457,6 +561,17 @@ class RNNGradCudnnKernel : public framework::OpKernel<T> {
int
hidden_size
=
ctx
.
Attr
<
int
>
(
"hidden_size"
);
int
num_layers
=
ctx
.
Attr
<
int
>
(
"num_layers"
);
auto
mode
=
ctx
.
Attr
<
std
::
string
>
(
"mode"
);
#ifdef PADDLE_WITH_HIP
miopenRNNMode_t
rnn_mode
=
miopenLSTM
;
if
(
mode
==
"LSTM"
)
rnn_mode
=
miopenLSTM
;
else
if
(
mode
==
"GRU"
)
rnn_mode
=
miopenGRU
;
else
if
(
mode
==
"RNN_RELU"
)
rnn_mode
=
miopenRNNRELU
;
else
if
(
mode
==
"RNN_TANH"
)
rnn_mode
=
miopenRNNTANH
;
#else
cudnnRNNMode_t
rnn_mode
=
CUDNN_LSTM
;
if
(
mode
==
"LSTM"
)
rnn_mode
=
CUDNN_LSTM
;
...
...
@@ -466,6 +581,7 @@ class RNNGradCudnnKernel : public framework::OpKernel<T> {
rnn_mode
=
CUDNN_RNN_RELU
;
else
if
(
mode
==
"RNN_TANH"
)
rnn_mode
=
CUDNN_RNN_TANH
;
#endif
else
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"rnn_mode should be LSTM, GRU, RNN_RELU or RNN_TANH, but received: "
...
...
@@ -532,7 +648,11 @@ class RNNGradCudnnKernel : public framework::OpKernel<T> {
?
pre_state_grad
[
0
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())
:
nullptr
;
T
*
init_c_grad_data
=
nullptr
;
#ifdef PADDLE_WITH_HIP
if
(
rnn_mode
==
miopenLSTM
)
{
#else
if
(
rnn_mode
==
CUDNN_LSTM
)
{
#endif
init_c_data
=
pre_state
[
1
]
->
data
<
T
>
();
// last_c_data = state[1]->data<T>();
last_c_grad_data
=
state_grad
[
1
]
->
data
<
T
>
();
...
...
@@ -579,6 +699,17 @@ class RNNGradCudnnKernel : public framework::OpKernel<T> {
if
(
!
has_seq_length
)
{
if
(
in_grad
)
{
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenRNNBackwardData
(
handle
,
rnn
.
rnn_desc
(),
seq_length
,
rnn
.
y_descs
(),
out_data
,
rnn
.
y_descs
(),
out_grad_data
,
rnn
.
last_h_desc
(),
last_h_grad_data
,
rnn
.
last_c_desc
(),
last_c_grad_data
,
rnn
.
weight_desc
(),
weight_data
,
rnn
.
init_h_desc
(),
init_h_data
,
rnn
.
init_c_desc
(),
init_c_data
,
rnn
.
x_descs
(),
in_grad_data
,
rnn
.
init_h_desc
(),
init_h_grad_data
,
rnn
.
init_c_desc
(),
init_c_grad_data
,
workspace_data_
.
data
<
uint8_t
>
(),
workspace_size
,
const_cast
<
uint8_t
*>
(
reserve_data
),
reserve_size
));
#else
// This interface is used when the input/output is unpadded.
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnRNNBackwardData
(
handle
,
rnn
.
rnn_desc
(),
seq_length
,
rnn
.
y_descs
(),
out_data
,
...
...
@@ -589,17 +720,27 @@ class RNNGradCudnnKernel : public framework::OpKernel<T> {
rnn
.
init_c_desc
(),
init_c_grad_data
,
workspace_data_
.
data
<
uint8_t
>
(),
workspace_size
,
const_cast
<
uint8_t
*>
(
reserve_data
),
reserve_size
));
#endif
}
if
(
!
weight_grad_list
.
empty
())
{
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenRNNBackwardWeights
(
handle
,
rnn
.
rnn_desc
(),
seq_length
,
rnn
.
x_descs
(),
input
->
data
<
T
>
(),
rnn
.
init_h_desc
(),
init_h_data
,
rnn
.
y_descs
(),
out
->
data
<
T
>
(),
rnn
.
weight_desc
(),
weight_grad_data
,
workspace_data_
.
data
<
uint8_t
>
(),
workspace_size
,
const_cast
<
uint8_t
*>
(
reserve_data
),
reserve_size
));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnRNNBackwardWeights
(
handle
,
rnn
.
rnn_desc
(),
seq_length
,
rnn
.
x_descs
(),
input
->
data
<
T
>
(),
rnn
.
init_h_desc
(),
init_h_data
,
rnn
.
y_descs
(),
out
->
data
<
T
>
(),
workspace_data_
.
data
<
uint8_t
>
(),
workspace_size
,
rnn
.
weight_desc
(),
weight_grad_data
,
const_cast
<
uint8_t
*>
(
reserve_data
),
reserve_size
));
#endif
}
}
else
{
#if CUDNN_VERSION >= 7201
#if
defined(PADDLE_WITH_CUDA) &&
CUDNN_VERSION >= 7201
// for train
// This interface is used when the input/output is padded.
if
(
in_grad
)
{
...
...
@@ -638,7 +779,13 @@ class RNNGradCudnnKernel : public framework::OpKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL
(
rnn
,
ops
::
RNNCudnnKernel
<
float
>
);
REGISTER_OP_CUDA_KERNEL
(
rnn_grad
,
ops
::
RNNGradCudnnKernel
<
float
>
);
#else
REGISTER_OP_CUDA_KERNEL
(
rnn
,
ops
::
RNNCudnnKernel
<
float
>
,
ops
::
RNNCudnnKernel
<
double
>
);
REGISTER_OP_CUDA_KERNEL
(
rnn_grad
,
ops
::
RNNGradCudnnKernel
<
float
>
,
ops
::
RNNGradCudnnKernel
<
double
>
);
#endif
paddle/fluid/operators/seed_op.cu
浏览文件 @
e312a1ff
...
...
@@ -12,7 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cuda.h>
#include "paddle/fluid/operators/seed_op.h"
namespace
paddle
{
...
...
paddle/fluid/operators/segment_pool_op.h
浏览文件 @
e312a1ff
...
...
@@ -63,7 +63,7 @@ void SegmentKernelLaunchHelper(const framework::ExecutionContext& context) {
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
set_zero
(
dev_ctx
,
output
,
static_cast
<
T
>
(
0
));
}
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
!
cpu_place
)
{
Tensor
length
;
length
.
mutable_data
<
IndexT
>
(
framework
::
make_ddim
({
1
}),
...
...
@@ -71,9 +71,15 @@ void SegmentKernelLaunchHelper(const framework::ExecutionContext& context) {
IndexT
*
length_data
=
length
.
data
<
IndexT
>
();
const
IndexT
*
segment_ids
=
segment
->
data
<
IndexT
>
();
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS
(
hipMemcpy
(
length_data
,
segment_ids
+
num_indices
-
1
,
sizeof
(
IndexT
),
hipMemcpyDeviceToHost
));
#else
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaMemcpy
(
length_data
,
segment_ids
+
num_indices
-
1
,
sizeof
(
IndexT
),
cudaMemcpyDeviceToHost
));
#endif
IndexT
length_host
=
length_data
[
0
];
length_host
++
;
...
...
paddle/fluid/operators/select_op_helper.h
浏览文件 @
e312a1ff
...
...
@@ -37,7 +37,7 @@ inline int GetBranchNumber(const framework::LoDTensor &mask) {
}
// when platform::is_gpu_place(mask.place()) is ture
std
::
unique_ptr
<
framework
::
LoDTensor
>
cpu_mask
{
new
framework
::
LoDTensor
()};
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
framework
::
TensorCopySync
(
mask
,
platform
::
CPUPlace
(),
cpu_mask
.
get
());
#else
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
...
...
paddle/fluid/operators/shuffle_batch_op.h
浏览文件 @
e312a1ff
...
...
@@ -33,7 +33,7 @@ namespace paddle {
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
#if defined(PADDLE_WITH_CUDA)
#if defined(PADDLE_WITH_CUDA)
|| defined(PADDLE_WITH_HIP)
template
<
typename
T
>
using
Vector
=
framework
::
Vector
<
T
>
;
#else
...
...
paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.cu
浏览文件 @
e312a1ff
...
...
@@ -11,7 +11,13 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace
cub
=
hipcub
;
#endif
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/math.h"
#include "paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.h"
...
...
paddle/fluid/operators/softmax_cudnn_op.cu
浏览文件 @
e312a1ff
...
...
@@ -16,7 +16,11 @@ limitations under the License. */
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#else
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#include "paddle/fluid/platform/gpu_launch_config.h"
namespace
paddle
{
...
...
@@ -388,18 +392,30 @@ class SoftmaxCUDNNKernel : public framework::OpKernel<T> {
ScopedTensorDescriptor
desc
;
std
::
vector
<
int
>
tensor_dims
=
{
N
,
dim
,
D
,
1
};
DataLayout
layout
=
DataLayout
::
kNCHW
;
#ifdef PADDLE_WITH_HIP
miopenTensorDescriptor_t
desc_
=
desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
#else
cudnnTensorDescriptor_t
desc_
=
desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
#endif
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
#ifdef PADDLE_WITH_HIP
auto
mode
=
axis
==
rank
-
1
?
MIOPEN_SOFTMAX_MODE_INSTANCE
:
MIOPEN_SOFTMAX_MODE_CHANNEL
;
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenSoftmaxForward
(
handle
,
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
x
->
data
<
T
>
(),
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
out_data
));
#else
auto
mode
=
axis
==
rank
-
1
?
CUDNN_SOFTMAX_MODE_INSTANCE
:
CUDNN_SOFTMAX_MODE_CHANNEL
;
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnSoftmaxForward
(
handle
,
CUDNN_SOFTMAX_ACCURATE
,
mode
,
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
x
->
data
<
T
>
(),
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
out_data
));
#endif
}
}
};
...
...
@@ -496,19 +512,32 @@ class SoftmaxGradCUDNNKernel : public framework::OpKernel<T> {
ScopedTensorDescriptor
desc
;
std
::
vector
<
int
>
tensor_dims
=
{
N
,
dim
,
D
,
1
};
DataLayout
layout
=
DataLayout
::
kNCHW
;
#ifdef PADDLE_WITH_HIP
miopenTensorDescriptor_t
desc_
=
desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
#else
cudnnTensorDescriptor_t
desc_
=
desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
#endif
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
#ifdef PADDLE_WITH_HIP
auto
mode
=
axis
==
rank
-
1
?
MIOPEN_SOFTMAX_MODE_INSTANCE
:
MIOPEN_SOFTMAX_MODE_CHANNEL
;
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
miopenSoftmaxBackward
(
handle
,
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
out
->
data
<
T
>
(),
desc_
,
dout
->
data
<
T
>
(),
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
dx_data
));
#else
auto
mode
=
axis
==
rank
-
1
?
CUDNN_SOFTMAX_MODE_INSTANCE
:
CUDNN_SOFTMAX_MODE_CHANNEL
;
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnSoftmaxBackward
(
handle
,
CUDNN_SOFTMAX_ACCURATE
,
mode
,
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
out
->
data
<
T
>
(),
desc_
,
dout
->
data
<
T
>
(),
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
dx_data
));
#endif
}
}
};
...
...
@@ -518,6 +547,15 @@ class SoftmaxGradCUDNNKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL
(
softmax
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
SoftmaxCUDNNKernel
<
float
>
,
ops
::
SoftmaxCUDNNKernel
<
plat
::
float16
>
);
REGISTER_OP_KERNEL
(
softmax_grad
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
SoftmaxGradCUDNNKernel
<
float
>
,
ops
::
SoftmaxGradCUDNNKernel
<
plat
::
float16
>
);
#else
REGISTER_OP_KERNEL
(
softmax
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
SoftmaxCUDNNKernel
<
float
>
,
ops
::
SoftmaxCUDNNKernel
<
double
>
,
...
...
@@ -526,3 +564,4 @@ REGISTER_OP_KERNEL(softmax_grad, CUDNN, plat::CUDAPlace,
ops
::
SoftmaxGradCUDNNKernel
<
float
>
,
ops
::
SoftmaxGradCUDNNKernel
<
double
>
,
ops
::
SoftmaxGradCUDNNKernel
<
plat
::
float16
>
);
#endif
paddle/fluid/operators/softmax_op.cc
浏览文件 @
e312a1ff
...
...
@@ -22,6 +22,10 @@ limitations under the License. */
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
...
...
@@ -66,7 +70,7 @@ class SoftmaxOp : public framework::OperatorWithKernel {
framework
::
DataLayout
layout_
=
framework
::
StringToDataLayout
(
data_format
);
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
platform
::
CanCUDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
...
...
@@ -190,7 +194,7 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
framework
::
DataLayout
layout_
=
framework
::
StringToDataLayout
(
data_format
);
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
));
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
platform
::
CanCUDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
...
...
paddle/fluid/operators/split_selected_rows_op.h
浏览文件 @
e312a1ff
...
...
@@ -82,7 +82,7 @@ class SplitSelectedRowsOpKernel : public framework::OpKernel<T> {
platform
::
CPUPlace
(),
dst
+
j
*
row_numel
,
platform
::
CPUPlace
(),
src
+
outs_dense_idx
[
i
][
j
]
*
row_numel
,
sizeof
(
T
)
*
row_numel
);
}
else
{
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
memory
::
Copy
(
platform
::
CUDAPlace
(),
dst
+
j
*
row_numel
,
platform
::
CUDAPlace
(),
...
...
paddle/fluid/operators/strided_memcpy.h
浏览文件 @
e312a1ff
...
...
@@ -98,7 +98,7 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
memory
::
Copy
(
cpu_place
,
dst
+
i
*
dst_after
,
cpu_place
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
size
);
}
else
{
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
auto
&
gpu_place
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place
);
auto
&
cuda_ctx
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
);
...
...
paddle/fluid/operators/strided_memcpy_test.cc
浏览文件 @
e312a1ff
...
...
@@ -72,7 +72,7 @@ TEST(StridedMemcpy, CPUConcat) {
}
}
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
TEST
(
StridedMemcpy
,
GPUCrop
)
{
// clang-format off
int
src
[]
=
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录