GemmConvOp.cpp 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ConvOp.h"
16
#include "GemmFunctor.h"
17
#include "Im2Col.h"
18 19 20 21 22
#include "paddle/math/MemoryHandle.h"

namespace paddle {

/*
23
 * \brief Forward calculation of convolution.
24 25 26 27 28 29 30 31
 */
template <DeviceType Device>
class GemmConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
32
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
33 34 35 36 37 38
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

39
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
40 41
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
42
    check(inputs, outputs);
43 44 45 46 47 48 49 50 51 52 53 54
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }
55

H
hedaoyuan 已提交
56 57 58 59 60 61 62 63 64
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];
65 66 67 68

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();
69 70
    bool skipIm2col = isSkipIm2col(filter);

71 72 73
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

74 75 76 77 78 79 80 81 82 83 84 85
    TensorShape colShape;
    real *colBuffer, *colData = NULL;

    if (!skipIm2col) {
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
86

87
    Im2ColFunctor<kCFO, Device, real> im2col;
88
    GemmFunctor<Device, real> gemm;
89
    size_t inputOffset = imShape.getElements();
90 91
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
H
hedaoyuan 已提交
92 93
    size_t filterOffset = filter.getElements() / groups_;

94
    for (size_t i = 0; i < batchSize; i++) {
95
      for (size_t g = 0; g < groups_; g++) {
96 97 98 99 100 101 102 103 104 105 106 107
        colBuffer = inputData + g * inputOffset;
        if (!skipIm2col) {
          im2col(inputData + g * inputOffset,
                 imShape,
                 colData,
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
                 paddingW());
          colBuffer = colData;
        }
H
Bug fix  
hedaoyuan 已提交
108
        int M = outputChannels / groups_;
109
        int N = outputHeight * outputWidth;
H
Bug fix  
hedaoyuan 已提交
110
        int K = inputChannels / groups_ * filterHeight * filterWidth;
111 112 113
        gemm(CblasNoTrans,
             CblasNoTrans,
             M,
114 115 116 117 118
             N,
             K,
             1.0f,
             filterData + g * filterOffset,
             K,
119
             colBuffer,
120
             N,
121
             beta,
122 123
             outputData + g * outputOffset,
             N);
124
      }
H
hedaoyuan 已提交
125 126
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
127 128 129 130
    }
  }
};

131 132 133 134 135 136 137 138 139 140
/*
 * \brief Backward input calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradInputFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
141
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
142 143 144 145 146 147
    const TensorShape& output = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& input = outputs[0].shape();
    checkShape(input, filter, output);
  }

148 149 150
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
151
    check(inputs, outputs);
H
hedaoyuan 已提交
152 153 154
    // Since the implementation of Col2ImFunctor is ADD_TO,
    // this function only supports ADD_TO mode.
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
155
    const TensorShape& output = inputs[0].shape();
156
    const TensorShape& filter = inputs[1].shape();
157 158 159 160 161 162
    const TensorShape& input = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
163 164
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
165 166 167 168 169 170 171
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* inputGrad = outputs[0].data<real>();
172 173
    bool skipIm2col = isSkipIm2col(filter);

174 175 176
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

177 178 179 180 181 182 183 184 185 186 187 188
    TensorShape colShape;
    real *colBuffer, *colData = NULL;

    if (!skipIm2col) {
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
189

190
    Col2ImFunctor<kCFO, Device, real> col2im;
191
    GemmFunctor<Device, real> gemm;
192

193
    size_t inputOffset = imShape.getElements();
H
format  
hedaoyuan 已提交
194
    size_t outputOffset =
195 196 197 198 199 200 201 202
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;

    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        int K = outputChannels / groups_;
        int N = outputHeight * outputWidth;
        int M = inputChannels / groups_ * filterHeight * filterWidth;
203 204 205 206 207 208
        colBuffer = colData;
        real scale = 0.0f;
        if (skipIm2col) {
          colBuffer = inputGrad + g * inputOffset;
          scale = 1.0f;
        }
209 210 211 212 213 214 215 216 217 218
        gemm(CblasTrans,
             CblasNoTrans,
             M,
             N,
             K,
             1.0f,
             filterData + g * filterOffset,
             M,
             outputGrad + g * outputOffset,
             N,
219 220
             scale,
             colBuffer,
221
             N);
222 223 224 225 226 227 228 229 230 231
        if (!skipIm2col) {
          col2im(inputGrad + g * inputOffset,
                 imShape,
                 colBuffer,
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
                 paddingW());
        }
232 233 234 235
      }
      inputGrad += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
    }
236 237 238 239 240 241 242 243 244 245 246 247 248
  }
};

/*
 * \brief Backward filter calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradFilterFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
249
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
250 251 252 253 254 255
    const TensorShape& output = inputs[0].shape();
    const TensorShape& input = inputs[1].shape();
    const TensorShape& filter = outputs[0].shape();
    checkShape(input, filter, output);
  }

256 257 258
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
259
    check(inputs, outputs);
260
    const TensorShape& output = inputs[0].shape();
261
    const TensorShape& input = inputs[1].shape();
262 263
    const TensorShape& filter = outputs[0].shape();

264 265 266 267 268 269 270
    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }

271 272 273 274
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
275 276
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
277 278 279 280 281 282 283
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* inputData = inputs[1].data<real>();
    real* filterGrad = outputs[0].data<real>();
284 285
    bool skipIm2col = isSkipIm2col(filter);

286 287 288
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

289 290 291 292 293 294 295 296 297 298 299 300
    TensorShape colShape;
    real *colBuffer, *colData = NULL;

    if (!skipIm2col) {
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
301

302
    Im2ColFunctor<kCFO, Device, real> im2col;
303
    GemmFunctor<Device, real> gemm;
304
    size_t inputOffset = imShape.getElements();
305 306 307 308 309
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
310 311 312 313 314 315 316 317 318 319 320 321
        colBuffer = inputData + g * inputOffset;
        if (!skipIm2col) {
          im2col(inputData + g * inputOffset,
                 imShape,
                 colData,
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
                 paddingW());
          colBuffer = colData;
        }
322 323 324 325 326 327 328 329 330 331 332
        int M = outputChannels / groups_;
        int K = outputHeight * outputWidth;
        int N = inputChannels / groups_ * filterHeight * filterWidth;
        gemm(CblasNoTrans,
             CblasTrans,
             M,
             N,
             K,
             1.0f,
             outputGrad + g * outputOffset,
             K,
333
             colBuffer,
334
             K,
335
             i == 0 ? beta : 1.0f,
336 337 338
             filterGrad + g * filterOffset,
             N);
      }
339 340
      inputData += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
341
    }
342 343 344
  }
};

345
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
346 347
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
348
#ifndef PADDLE_ONLY_CPU
349
REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction);
350 351
REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
352
#endif
353 354

}  // namespace paddle