Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1846d9e1
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1846d9e1
编写于
5月 26, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add a convolution Function based on gemm.
上级
b6de52c4
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
162 addition
and
0 deletion
+162
-0
paddle/function/GemmConvOp.cpp
paddle/function/GemmConvOp.cpp
+162
-0
未找到文件。
paddle/function/GemmConvOp.cpp
0 → 100644
浏览文件 @
1846d9e1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ConvOp.h"
#include "paddle/math/MathFunctions.h"
#include "paddle/math/MemoryHandle.h"
namespace
paddle
{
/*
* imData = [input_channels, input_height, input_width]
* colData = [input_channels, filter_height, filter_width,
* output_height, output_width]
*/
template
<
class
T
>
class
Im2ColFunctor
{
public:
void
operator
()(
const
T
*
imData
,
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterHeight
,
int
filterWidth
,
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
,
int
outputHeight
,
int
outputWidth
,
T
*
colData
)
{
int
channelsCol
=
inputChannels
*
filterHeight
*
filterWidth
;
for
(
int
c
=
0
;
c
<
channelsCol
;
++
c
)
{
int
wOffset
=
c
%
filterWidth
;
int
hOffset
=
(
c
/
filterWidth
)
%
filterHeight
;
int
c_im
=
c
/
filterHeight
/
filterWidth
;
for
(
int
h
=
0
;
h
<
outputHeight
;
++
h
)
{
for
(
int
w
=
0
;
w
<
outputWidth
;
++
w
)
{
// no c_im*height to Exclude the channel number
int
imgRowIdx
=
h
*
strideHeight
+
hOffset
;
int
imgColIdx
=
w
*
strideWidth
+
wOffset
;
if
((
imgRowIdx
-
paddingHeight
)
<
0
||
(
imgRowIdx
-
paddingHeight
)
>=
inputHeight
||
(
imgColIdx
-
paddingWidth
)
<
0
||
(
imgColIdx
-
paddingWidth
)
>=
inputWidth
)
{
colData
[(
c
*
outputHeight
+
h
)
*
outputWidth
+
w
]
=
T
(
0
);
}
else
{
imgRowIdx
+=
c_im
*
inputHeight
-
paddingHeight
;
imgColIdx
-=
paddingWidth
;
colData
[(
c
*
outputHeight
+
h
)
*
outputWidth
+
w
]
=
imData
[
imgRowIdx
*
inputWidth
+
imgColIdx
];
}
}
}
}
}
};
/*
* Function Arguments:
*
* \param inputs[0] Input image data, is NCHW format, where N is batch size,
* C is the number of channels, H and W is the height and
* width of input image.
* \param inputs[1] Filter data, is MCHW, where M is the number of output
* channels, C is the number of input channels, H and W
* is height and width of filter.
* \param outputs[0] Output image data, is NCHW format, where N is batch size,
* C is the number of channels, H and W is the height and
* width of output image.
*/
template
<
DeviceType
Device
>
class
GemmConvFunction
:
public
ConvFunctionBase
{
public:
void
init
(
const
FuncConfig
&
config
)
override
{
ConvFunctionBase
::
init
(
config
);
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
check
(
inputs
,
outputs
);
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ASSIGN_TO
);
size_t
batchSize
=
inputs
[
0
].
shape
()[
0
];
size_t
inputChannels
=
inputs
[
0
].
shape
()[
1
];
size_t
inputHeight
=
inputs
[
0
].
shape
()[
2
];
size_t
inputWidth
=
inputs
[
0
].
shape
()[
3
];
size_t
filterHeight
=
inputs
[
1
].
shape
()[
2
];
size_t
filterWidth
=
inputs
[
1
].
shape
()[
2
];
size_t
outputChannels
=
outputs
[
0
].
shape
()[
1
];
size_t
outputHeight
=
outputs
[
0
].
shape
()[
2
];
size_t
outputWidth
=
outputs
[
0
].
shape
()[
3
];
real
*
inputData
=
inputs
[
0
].
data
<
real
>
();
real
*
filterData
=
inputs
[
1
].
data
<
real
>
();
real
*
outputData
=
outputs
[
0
].
data
<
real
>
();
size_t
size
=
inputChannels
*
filterHeight
*
filterWidth
*
outputHeight
*
outputWidth
;
resizeBuffer
(
size
);
real
*
colData
=
reinterpret_cast
<
real
*>
(
memory_
->
getBuf
());
Im2ColFunctor
<
real
>
im2col
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
im2col
(
inputData
,
inputChannels
,
inputHeight
,
inputWidth
,
filterHeight
,
filterWidth
,
stride_
,
stride_
,
padding_
,
padding_
,
outputHeight
,
outputWidth
,
colData
);
int
M
=
outputChannels
;
int
N
=
outputHeight
*
outputWidth
;
int
K
=
inputChannels
*
filterHeight
*
filterWidth
;
gemm
<
real
>
(
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
K
,
1.0
f
,
filterData
,
K
,
colData
,
N
,
0.0
f
,
outputData
,
N
);
inputData
+=
inputChannels
*
inputHeight
*
inputWidth
;
outputData
+=
outputChannels
*
outputHeight
*
outputWidth
;
}
}
void
resizeBuffer
(
size_t
newSize
)
{
if
(
!
memory_
||
newSize
*
sizeof
(
real
)
>
memory_
->
getAllocSize
())
{
memory_
=
std
::
make_shared
<
CpuMemoryHandle
>
(
newSize
*
sizeof
(
real
));
}
}
private:
CpuMemHandlePtr
memory_
;
};
REGISTER_TYPED_FUNC
(
GemmConv
,
CPU
,
GemmConvFunction
);
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录