GemmConvOp.cpp 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "GemmConvOp.h"
#include "GemmFunctor.h"
17 18 19 20 21 22 23 24 25 26
#include "paddle/math/MemoryHandle.h"

namespace paddle {

/*
 * imData = [input_channels, input_height, input_width]
 * colData = [input_channels, filter_height, filter_width,
 *            output_height, output_width]
 */
template <class T>
27
class Im2ColFunctor<DEVICE_TYPE_CPU, T> {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
public:
  void operator()(const T* imData,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth,
                  int outputHeight,
                  int outputWidth,
                  T* colData) {
    int channelsCol = inputChannels * filterHeight * filterWidth;

    for (int c = 0; c < channelsCol; ++c) {
      int wOffset = c % filterWidth;
      int hOffset = (c / filterWidth) % filterHeight;
      int c_im = c / filterHeight / filterWidth;
      for (int h = 0; h < outputHeight; ++h) {
        for (int w = 0; w < outputWidth; ++w) {
          // no c_im*height to Exclude the channel number
          int imgRowIdx = h * strideHeight + hOffset;
          int imgColIdx = w * strideWidth + wOffset;
          if ((imgRowIdx - paddingHeight) < 0 ||
              (imgRowIdx - paddingHeight) >= inputHeight ||
              (imgColIdx - paddingWidth) < 0 ||
              (imgColIdx - paddingWidth) >= inputWidth) {
            colData[(c * outputHeight + h) * outputWidth + w] = T(0);
          } else {
            imgRowIdx += c_im * inputHeight - paddingHeight;
            imgColIdx -= paddingWidth;
            colData[(c * outputHeight + h) * outputWidth + w] =
                imData[imgRowIdx * inputWidth + imgColIdx];
          }
        }
      }
    }
  }
};

/*
 * Function Arguments:
 *
 * \param inputs[0]  Input image data, is NCHW format, where N is batch size,
 *                   C is the number of channels, H and W is the height and
 *                   width of input image.
 * \param inputs[1]  Filter data, is MCHW, where M is the number of output
 *                   channels, C is the number of input channels, H and W
 *                   is height and width of filter.
 * \param outputs[0] Output image data, is NCHW format, where N is batch size,
  *                  C is the number of channels, H and W is the height and
 *                   width of output image.
 */
template <DeviceType Device>
class GemmConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    check(inputs, outputs);
    CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);

    size_t batchSize = inputs[0].shape()[0];
    size_t inputChannels = inputs[0].shape()[1];
    size_t inputHeight = inputs[0].shape()[2];
    size_t inputWidth = inputs[0].shape()[3];
    size_t filterHeight = inputs[1].shape()[2];
H
hedaoyuan 已提交
99
    size_t filterWidth = inputs[1].shape()[3];
100 101 102 103
    size_t outputChannels = outputs[0].shape()[1];
    size_t outputHeight = outputs[0].shape()[2];
    size_t outputWidth = outputs[0].shape()[3];

104 105
    CHECK_EQ(inputChannels / groups_, inputs[1].shape()[1]);

106 107 108 109
    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();

110 111
    size_t size = inputChannels / groups_ * filterHeight * filterWidth *
                  outputHeight * outputWidth;
112 113 114
    resizeBuffer(size);
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

115 116
    Im2ColFunctor<Device, real> im2col;
    GemmFunctor<Device, real> gemm;
117 118 119 120
    size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = inputs[1].shape().getElements() / groups_;
121
    for (size_t i = 0; i < batchSize; i++) {
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
      for (int g = 0; g < groups_; g++) {
        im2col(inputData + g * inputOffset,
               inputChannels / groups_,
               inputHeight,
               inputWidth,
               filterHeight,
               filterWidth,
               strideH(),
               strideW(),
               paddingH(),
               paddingW(),
               outputHeight,
               outputWidth,
               colData);

        int M = outputChannels;
        int N = outputHeight * outputWidth;
        int K = inputChannels * filterHeight * filterWidth;
140 141 142 143 144 145 146 147 148 149 150
        gemm(M,
             N,
             K,
             1.0f,
             filterData + g * filterOffset,
             K,
             colData,
             N,
             0.0f,
             outputData + g * outputOffset,
             N);
151
      }
H
hedaoyuan 已提交
152 153
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
154 155 156 157 158
    }
  }

  void resizeBuffer(size_t newSize) {
    if (!memory_ || newSize * sizeof(real) > memory_->getAllocSize()) {
H
hedaoyuan 已提交
159 160 161 162 163
      if (Device == DEVICE_TYPE_CPU) {
        memory_ = std::make_shared<CpuMemoryHandle>(newSize * sizeof(real));
      } else {
        memory_ = std::make_shared<GpuMemoryHandle>(newSize * sizeof(real));
      }
164 165 166 167
    }
  }

private:
H
hedaoyuan 已提交
168
  MemoryHandlePtr memory_;
169 170 171
};

REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
H
hedaoyuan 已提交
172
#ifndef PADDLE_ONLY_CPU
173
REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction);
H
hedaoyuan 已提交
174
#endif
175 176

}  // namespace paddle