linalg.py 115.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
Z
Zhang Ting 已提交
16
from ..fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
17
from ..framework import _varbase_creator, _dygraph_tracer
H
huangxu96 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..static import Variable
J
Jiabin Yang 已提交
20
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
21
from ..fluid.layers import transpose, cast  # noqa: F401
A
andyjpaddle 已提交
22 23
from ..fluid import layers
import paddle
24 25
from paddle.common_ops_import import core
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
26
from paddle import _C_ops
27

28 29
__all__ = []

30 31 32
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

33

S
ShenLiang 已提交
34
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
35
    """
36 37
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
38
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
39

S
ShenLiang 已提交
40 41
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
42 43 44 45 46

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
47 48
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
49 50 51 52 53 54 55 56
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

57 58
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
59
      After the matrix multiply, the prepended dimension is removed.
60 61

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
62 63
      the matrix-vector product is obtained.

64 65 66 67 68 69 70 71 72
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
73
      out will be a (j, k, n, p) tensor.
74 75

    Args:
S
ShenLiang 已提交
76 77
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
78 79 80 81 82 83
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
84
        Tensor: The output Tensor.
85 86 87

    Examples:

S
ShenLiang 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    .. code-block:: python

        import paddle
        import numpy as np

        # vector * vector
        x_data = np.random.random([10]).astype(np.float32)
        y_data = np.random.random([10]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [1]

        # matrix * vector
        x_data = np.random.random([10, 5]).astype(np.float32)
        y_data = np.random.random([5]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10]

        # batched matrix * broadcasted vector
        x_data = np.random.random([10, 5, 2]).astype(np.float32)
        y_data = np.random.random([2]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10, 5]

        # batched matrix * batched matrix
        x_data = np.random.random([10, 5, 2]).astype(np.float32)
        y_data = np.random.random([10, 2, 5]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10, 5, 5]

        # batched matrix * broadcasted matrix
        x_data = np.random.random([10, 1, 5, 2]).astype(np.float32)
        y_data = np.random.random([1, 3, 2, 5]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10, 3, 5, 5]
137 138

    """
139 140 141 142 143
    if in_dygraph_mode():
        return _C_ops.final_state_matmul(x, y, transpose_x, transpose_y)

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
W
wanghuancoder 已提交
144
        op = getattr(_C_ops, op_type)
S
ShenLiang 已提交
145 146
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

147
    attrs = {
S
ShenLiang 已提交
148 149
        'trans_x': transpose_x,
        'trans_y': transpose_y,
150 151 152 153 154
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
155
            check_variable_and_dtype(
156 157 158
                val, name,
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
                'matmul')
159 160 161

    __check_input(x, y)

S
ShenLiang 已提交
162
    helper = LayerHelper('matmul_v2', **locals())
163 164
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
S
ShenLiang 已提交
165
        type='matmul_v2',
166 167 168 169 170
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs=attrs)
    return out
Z
Zhang Ting 已提交
171 172


myq406450149's avatar
myq406450149 已提交
173
def norm(x, p='fro', axis=None, keepdim=False, name=None):
174
    """
S
swtkiwi 已提交
175

176 177 178
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

179 180 181 182 183 184
    .. note::
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

185
    Args:
myq406450149's avatar
myq406450149 已提交
186
        x (Tensor): The input tensor could be N-D tensor, and the input data
187
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
188
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
189
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
190
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
191 192
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
193
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
194
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
myq406450149's avatar
myq406450149 已提交
195
            Defalut value is `None`.
196 197 198 199 200 201 202 203
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
204
        Tensor: results of norm operation on the specified axis of input tensor,
205
        it's data type is the same as input's Tensor.
206

207 208
    Examples:
        .. code-block:: python
209

210
            import paddle
myq406450149's avatar
myq406450149 已提交
211 212 213 214 215 216 217 218
            import numpy as np
            shape=[2, 3, 4]
            np_input = np.arange(24).astype('float32') - 12
            np_input = np_input.reshape(shape)
            x = paddle.to_tensor(np_input)
            #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
            # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]

219
            # compute frobenius norm along last two dimensions.
220
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
myq406450149's avatar
myq406450149 已提交
221 222
            # out_fro.numpy() [17.435596 16.911535 16.7332   16.911535]

223
            # compute 2-order vector norm along last dimension.
224
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
myq406450149's avatar
myq406450149 已提交
225 226 227 228
            #out_pnorm.numpy(): [[21.118711  13.190906   5.477226]
            #                    [ 3.7416575 11.224972  19.131126]]

            # compute 2-order  norm along [0,1] dimension.
229
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
myq406450149's avatar
myq406450149 已提交
230 231 232
            #out_pnorm.numpy(): [17.435596 16.911535 16.7332   16.911535]

            # compute inf-order  norm
233
            out_pnorm = paddle.linalg.norm(x, p=np.inf)
myq406450149's avatar
myq406450149 已提交
234
            #out_pnorm.numpy()  = [12.]
235
            out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
236 237 238
            #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]

            # compute -inf-order  norm
239
            out_pnorm = paddle.linalg.norm(x, p=-np.inf)
myq406450149's avatar
myq406450149 已提交
240
            #out_pnorm.numpy(): [0.]
241
            out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
242
            #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
243 244
    """

myq406450149's avatar
myq406450149 已提交
245
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
246 247 248 249 250 251 252 253 254 255 256
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
Z
zhiboniu 已提交
257
        if paddle.in_dynamic_mode():
myq406450149's avatar
myq406450149 已提交
258
            if dim is None:
W
wanghuancoder 已提交
259 260 261 262
                return _C_ops.frobenius_norm(input, 'keep_dim', keepdim,
                                             'reduce_all', True)
            return _C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim', keepdim,
                                         'reduce_all', False)
myq406450149's avatar
myq406450149 已提交
263 264
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
265 266 267 268 269
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
270 271
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
272 273 274 275 276 277 278 279 280 281 282 283

        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs)
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
myq406450149's avatar
myq406450149 已提交
284
                    asvector=False,
285 286 287 288 289 290 291 292 293
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
294 295 296 297 298 299
        if in_dygraph_mode():
            if axis is None: axis = -1
            return _C_ops.final_state_p_norm(input, porder, axis, 1e-12,
                                             keepdim, asvector)

        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
300
            if axis is None: axis = -1
W
wanghuancoder 已提交
301 302
            return _C_ops.p_norm(input, 'porder', porder, 'axis', axis,
                                 'keepdim', keepdim, 'asvector', asvector)
303

304 305 306 307
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
myq406450149's avatar
myq406450149 已提交
308 309 310
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

311 312 313 314
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
315
            'asvector': asvector,
316 317 318
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
319 320
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
321 322 323 324 325 326 327 328

        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs)
        return out

myq406450149's avatar
myq406450149 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    def inf_norm(input,
                 porder=None,
                 axis=axis,
                 keepdim=False,
                 asvector=False,
                 name=None):
        helper = LayerHelper('frobenius_norm', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

        reduce_all = True if axis == None or axis == [] or asvector == True else False
        axis = axis if axis != None and axis != [] else [0]

        reduce_type = 'reduce_max' if porder == np.float(
            'inf') else 'reduce_min'
        helper.append_op(
            type=reduce_type,
            inputs={'X': out},
            outputs={'Out': reduce_out},
            attrs={'dim': axis,
                   'keep_dim': keepdim,
                   'reduce_all': reduce_all})

        return reduce_out

    def p_matrix_norm(input, porder=1., axis=axis, keepdim=False, name=None):
358 359 360 361
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
myq406450149's avatar
myq406450149 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out})
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder})
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False
            })
        porder
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1. / porder)})
        return out

396 397 398
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
399
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
400 401 402 403 404
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
            return vector_norm(
myq406450149's avatar
myq406450149 已提交
405 406 407 408 409 410
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name)
411 412 413 414
        else:
            raise ValueError("only valid p type is string or float, found {}".
                             format(type(p)))

myq406450149's avatar
myq406450149 已提交
415 416
    if isinstance(axis, tuple):
        axis = list(axis)
417 418 419 420 421
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435
        if isinstance(p, str):
            if p == "fro":
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name)

            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
436
            return vector_norm(
myq406450149's avatar
myq406450149 已提交
437 438 439 440 441 442
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name)
443 444 445 446 447 448 449
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
450 451 452
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
453 454 455 456
        elif p == 0:
            raise ValueError(
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".
                format(axis))
457
        else:
myq406450149's avatar
myq406450149 已提交
458 459
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name)
460 461 462 463 464 465
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


466
def dist(x, y, p=2, name=None):
467
    r"""
S
swtkiwi 已提交
468

Z
Zhang Ting 已提交
469
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
470 471
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

    When p = inf, the inf-norm of z is the maximum element of z.

    .. math::

        ||z||_\infty=\max_i |z_i|

    When p = -inf, the negative-inf-norm of z is the minimum element of z.

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
522 523
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
524 525 526
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
527
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
528 529 530 531 532 533 534

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

535 536 537 538
            x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32")
            y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32")
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
539

540 541
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
542

543 544
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
545

546 547
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560
    """
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
liuwei1031 已提交
561 562


563 564 565 566 567 568
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
569 570
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
625
            # a.numpy()
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

    def mat_norm(input, porder=1., axis=None):
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

Z
zhiboniu 已提交
660
        if paddle.in_dynamic_mode():
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim',
                                        keepdim, 'reduce_all', reduce_all)
            if porder == 1 or porder == np.inf:
                return _C_ops.reduce_max(sum_out, 'dim', [-1], 'keepdim',
                                         keepdim, 'reduce_all', reduce_all)
            if porder == -1 or porder == -np.inf:
                return _C_ops.reduce_min(sum_out, 'dim', [-1], 'keepdim',
                                         keepdim, 'reduce_all', reduce_all)

        block = LayerHelper('norm', **locals())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out})
        block.append_op(
            type='reduce_sum',
            inputs={'X': abs_out},
            outputs={'Out': sum_out},
            attrs={'dim': axis,
                   'keep_dim': keepdim,
                   'reduce_all': reduce_all})
        if porder == 1 or porder == np.inf:
            block.append_op(
                type='reduce_max',
                inputs={'X': sum_out},
                outputs={'Out': out},
                attrs={
                    'dim': [-1],
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all
                })
        if porder == -1 or porder == -np.inf:
            block.append_op(
                type='reduce_min',
                inputs={'X': sum_out},
                outputs={'Out': out},
                attrs={
                    'dim': [-1],
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all
                })
        return out

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

Z
zhiboniu 已提交
717
        if paddle.in_dynamic_mode():
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
            pow_out = _C_ops.pow(input, 'factor', porder)
            sum_out_1 = _C_ops.reduce_sum(pow_out, 'dim', axis, 'keepdim',
                                          keepdim, 'reduce_all', reduce_all)
            sum_out_2 = _C_ops.reduce_sum(sum_out_1, 'dim', axis, 'keepdim',
                                          keepdim, 'reduce_all', reduce_all)
            return _C_ops.pow(sum_out_2, 'factor', float(1. / porder))

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_1 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_2 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        block.append_op(
            type='pow',
            inputs={'X': input},
            outputs={'Out': pow_out},
            attrs={'factor': porder})
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out_1},
            attrs={'dim': axis,
                   'keep_dim': keepdim,
                   'reduce_all': reduce_all})
        block.append_op(
            type='reduce_sum',
            inputs={'X': sum_out_1},
            outputs={'Out': sum_out_2},
            attrs={'dim': axis,
                   'keep_dim': keepdim,
                   'reduce_all': reduce_all})
        block.append_op(
            type='pow',
            inputs={'X': sum_out_2},
            outputs={'Out': out},
            attrs={'factor': float(1. / porder)})
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

Z
zhiboniu 已提交
771
        if paddle.in_dynamic_mode():
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
            if porder == "nuc":
                return _C_ops.reduce_sum(s, 'dim', axis, 'keepdim', keepdim,
                                         'reduce_all', reduce_all)
            max_out = _C_ops.reduce_max(s, 'dim', axis, 'keepdim', keepdim,
                                        'reduce_all', reduce_all)
            min_out = _C_ops.reduce_min(s, 'dim', axis, 'keepdim', keepdim,
                                        'reduce_all', reduce_all)
            if porder == 2:
                return _C_ops.elementwise_div(max_out, min_out, 'aixs', axis,
                                              'use_mkldnn', False)
            if porder == -2:
                return _C_ops.elementwise_div(min_out, max_out, 'aixs', axis,
                                              'use_mkldnn', False)

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        if porder == "nuc":
            block.append_op(
                type='reduce_sum',
                inputs={'X': s},
                outputs={'Out': out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all
                })
            return out
        max_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        min_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        block.append_op(
            type='reduce_max',
            inputs={'X': s},
            outputs={'Out': max_out},
            attrs={'dim': axis,
                   'keep_dim': keepdim,
                   'reduce_all': reduce_all})
        block.append_op(
            type='reduce_min',
            inputs={'X': s},
            outputs={'Out': min_out},
            attrs={'dim': axis,
                   'keep_dim': keepdim,
                   'reduce_all': reduce_all})
        if porder == 2:
            block.append_op(
                type='elementwise_div',
                inputs={'X': max_out,
                        'Y': min_out},
                outputs={'Out': out},
                attrs={'aixs': axis,
                       'use_mkldnn': False})
            return out
        if porder == -2:
            block.append_op(
                type='elementwise_div',
                inputs={'X': min_out,
                        'Y': max_out},
                outputs={'Out': out},
                attrs={'aixs': axis,
                       'use_mkldnn': False})
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
838
        if paddle.in_dynamic_mode():
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
        raise ValueError("input should be a matrix or batches of matrices, " +
                         "but the dimention of received input is {}".format(
                             len(x_shape)))
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
                return mat_norm(
                    x, porder=p, axis=[-2]) * mat_norm(
                        x_inv, porder=p, axis=[-2])
            if p in (np.inf, -np.inf):
                return mat_norm(
                    x, porder=p, axis=[-1]) * mat_norm(
                        x_inv, porder=p, axis=[-1])
        else:
            raise ValueError("only support p is {} when input is a ".format(p) +
                             "square matrix or batches of square matrices")
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(
                p) + "1, -1, 2, -2, inf, -inf) or none")


L
liuwei1031 已提交
880 881 882
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
883

L
liuwei1031 已提交
884
    .. note::
885 886
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
887 888

    Parameters:
S
ShenLiang 已提交
889 890
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
891 892
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

893
    Returns:
894
        Tensor: the calculated result Tensor.
895

L
liuwei1031 已提交
896 897 898 899 900 901
    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
902 903 904

        x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32)
        y_data = np.random.uniform(1, 3, [10]).astype(np.float32)
S
ShenLiang 已提交
905 906
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
907
        z = paddle.dot(x, y)
908
        print(z)
L
liuwei1031 已提交
909 910 911

    """
    op_type = 'dot'
912
    # skip var type check in dygraph mode to improve efficiency
Z
zhiboniu 已提交
913
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
914
        op = getattr(_C_ops, op_type)
915 916
        return op(x, y)

L
liuwei1031 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
    helper.append_op(
        type="dot", inputs={'X': x,
                            'Y': y}, attrs={}, outputs={"Out": out})
    return out
935 936


Z
zhiboniu 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix 
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
                "shape of Input(input) is %s." % len(fweights.shape))
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
                "size of Input(fweights) is {}.".format(observation_num,
                                                        fweights.shape[0]))
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
                "min of Input(fweights) is {}.".format(fweights.min()))
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
                "length of Input(input) is %s." % len(aweights.shape))
        check_variable_and_dtype(aweights, 'dtype', ['float32', 'float64'],
                                 'cov')
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
                "size of Input(aweights) is {}.".format(observation_num,
                                                        aweights.shape[0]))
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
                "min of Input(aweights) is {}.".format(aweights.min()))
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1050 1051
def t(input, name=None):
    """
1052 1053
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1054
    the paddle.transpose function which perm dimensions set 0 and 1.
1055

1056
    Args:
1057
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float16, float32, float64, int32.
1058
        name(str, optional): The default value is None.  Normally there is no need for
1059 1060
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1061
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1062

1063
    For Example:
1064

1065
        .. code-block:: text
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

             # Example 1 (0-D tensor)
             x = tensor([0.79])
             paddle.t(x) = tensor([0.79])

             # Example 2 (1-D tensor)
             x = tensor([0.79, 0.84, 0.32])
             paddle.t(x) = tensor([0.79, 0.84, 0.32])

             # Example 3 (2-D tensor)
             x = tensor([0.79, 0.84, 0.32],
                        [0.64, 0.14, 0.57])
             paddle.t(x) = tensor([0.79, 0.64],
                                  [0.84, 0.14],
                                  [0.32, 0.57])

1082
     Examples:
1083

1084
        .. code-block:: python
1085

1086
            import paddle
1087
            x = paddle.ones(shape=[2, 3], dtype='int32')
1088
            x_transposed = paddle.t(x)
1089 1090
            print(x_transposed.shape)
            # [3, 2]
1091 1092 1093 1094 1095 1096
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
Z
zhiboniu 已提交
1097
    if paddle.in_dynamic_mode():
1098 1099 1100 1101
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
W
wanghuancoder 已提交
1102
        out, _ = _C_ops.transpose2(input, 'axis', perm)
1103 1104 1105
        return out

    check_variable_and_dtype(
1106 1107
        input, 'input', ['float16', 'float32', 'float64', 'int32',
                         'int64'], 'transpose')
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': [1, 0]})
    return out
1122 1123


1124
def cross(x, y, axis=None, name=None):
1125
    """
1126
    Computes the cross product between two tensors along an axis.
1127

1128 1129
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1130

1131
    Args:
1132 1133
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
1134
        axis (int, optional): The axis along which to compute the cross product. It defaults to the first axis found with the length 3.
1135
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1136 1137

    Returns:
1138
        Tensor. A Tensor with same data type as `x`.
1139

1140 1141
    Examples:
        .. code-block:: python
1142

1143
            import paddle
1144

Z
Zhou Wei 已提交
1145 1146 1147 1148 1149 1150
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1161
    """
J
Jiabin Yang 已提交
1162
    if in_dygraph_mode():
1163
        axis = K_DEFAULT_DIM if axis is None else axis
J
Jiabin Yang 已提交
1164 1165 1166 1167 1168 1169 1170
        return _C_ops.final_state_cross(x, y, axis)
    else:
        if _in_legacy_dygraph():
            if axis is not None:
                return _C_ops.cross(x, y, 'dim', axis)
            else:
                return _C_ops.cross(x, y)
1171
        else:
J
Jiabin Yang 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

            helper.append_op(
                type='cross',
                inputs={'X': x,
                        'Y': y},
                outputs={'Out': out},
                attrs=attrs)
            return out
1184 1185


1186
def cholesky(x, upper=False, name=None):
1187
    r"""
G
Guo Sheng 已提交
1188
    Computes the Cholesky decomposition of one symmetric positive-definite
1189 1190
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1191 1192 1193 1194 1195 1196
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1197
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1198 1199 1200 1201 1202 1203 1204
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.

    Returns:
1205
        Tensor: A Tensor with same shape and data type as `x`. It represents \
G
Guo Sheng 已提交
1206
            triangular matrices generated by Cholesky decomposition.
1207

G
Guo Sheng 已提交
1208 1209 1210 1211 1212 1213
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1214 1215 1216
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1217
            x = paddle.to_tensor(x_data)
1218
            out = paddle.linalg.cholesky(x, upper=False)
1219
            print(out)
1220 1221 1222
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1223 1224

    """
H
hong 已提交
1225 1226 1227 1228
    if in_dygraph_mode():
        return _C_ops.final_state_cholesky(x, upper)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1229
        return _C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1230

G
Guo Sheng 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper})
    return out


1243 1244 1245 1246
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1247
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1248
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1249 1250

    Args:
1251 1252 1253 1254
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1255
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1256 1257
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1258
            the lower triangular of the matrix to compute.
1259 1260 1261 1262
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1280

1281 1282
    """

Z
zhiboniu 已提交
1283
    if paddle.in_dynamic_mode():
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
        return _C_ops.matrix_rank(x, tol_tensor, "tol", tol_attr, 'hermitian',
                                  hermitian, 'use_default_tol', use_default_tol)

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        check_variable_and_dtype(tol, 'tol', ['float32'], 'matrix_rank')
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


1329 1330 1331 1332 1333 1334 1335 1336 1337
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1338 1339
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1340 1341 1342 1343
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1344
        Tensor: The product Tensor.
1345 1346

    Examples:
S
sunzhongkai588 已提交
1347 1348 1349
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1350

S
sunzhongkai588 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
            #output size: (2, 2, 2)
            #output value:
            #[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]]
            out_np = out.numpy()
1364

1365
    """
Y
yaoxuefeng 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".
            format(x_shape, y_shape))
    if x_shape[2] != y_shape[1]:
        raise ValueError(
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".
            format(x_shape, y_shape))
1376 1377 1378 1379
    if x_shape[0] != y_shape[0]:
        raise ValueError(
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".
            format(x_shape, y_shape))
1380

Z
zhiboniu 已提交
1381
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1382
        return _C_ops.bmm(x, y)
1383 1384

    helper = LayerHelper('bmm', **locals())
1385 1386 1387
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1388 1389


1390
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1391
    """
1392
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1393 1394 1395
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1396
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1397 1398 1399 1400 1401 1402
            should be float32, float64, int32, int64.
        bins (int): number of histogram bins
        min (int): lower end of the range (inclusive)
        max (int): upper end of the range (inclusive)

    Returns:
1403
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1404

1405
    Examples:
Q
Qi Li 已提交
1406
        .. code-block:: python
1407

Q
Qi Li 已提交
1408
            import paddle
1409

1410
            inputs = paddle.to_tensor([1, 2, 1])
1411 1412
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1413
    """
H
hong 已提交
1414 1415 1416 1417
    if in_dygraph_mode():
        return _C_ops.final_state_histogram(input, bins, min, max)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1418
        return _C_ops.histogram(input, "bins", bins, "min", min, "max", max)
Q
Qi Li 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

    helper = LayerHelper('histogram', **locals())
    check_variable_and_dtype(
        input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram')
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
    helper.append_op(
        type='histogram',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'bins': bins,
               'min': min,
               'max': max})
    return out
S
smallv0221 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463


def bincount(x, weights=None, minlength=0, name=None):
    """
    Computes frequency of each value in the input tensor. 

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

H
hong 已提交
1464 1465 1466 1467
    # if in_dygraph_mode():
    #     return _C_ops.final_state_bincount(x, weights, minlength)

    if _in_legacy_dygraph():
S
smallv0221 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
        return _C_ops.bincount(x, weights, "minlength", minlength)

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
        check_variable_and_dtype(weights, 'Weights',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'bincount')
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='bincount',
        inputs={'X': x,
                'Weights': weights},
        outputs={'Out': out},
        attrs={'minlength': minlength})
    return out
1488 1489 1490 1491 1492 1493 1494


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1495
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1496
            should be one of float32, float64.
F
furnace 已提交
1497
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import numpy as np
            import paddle

            x_data = np.array([[2, 1, 3], [3, 0, 1]]).astype("float64")
            x = paddle.to_tensor(x_data)
            vec_data = np.array([3, 5, 1])
            vec = paddle.to_tensor(vec_data).astype("float64")
            out = paddle.mv(x, vec)
    """
J
Jiabin Yang 已提交
1520 1521 1522 1523 1524 1525 1526
    if in_dygraph_mode():
        return _C_ops.final_state_mv(x, vec)
    else:
        if _in_legacy_dygraph():
            out = _C_ops.mv(x, vec)
            return out
        else:
1527

J
Jiabin Yang 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
                    check_variable_and_dtype(val, name, ['float32', 'float64'],
                                             'mv')
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
                        "x should be 2-dimensional. But received x's dimention: {}".
                        format(x_shape))
                if len(vec_shape) != 1:
                    raise ValueError(
                        "vec should be 1-dimensional. But received vec's dimention: {}".
                        format(vec_shape))

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='mv', inputs={'X': x,
                                   'Vec': vec}, outputs={'Out': out})
            return out
1552 1553


1554
def det(x, name=None):
H
huangxu96 已提交
1555 1556 1557 1558 1559 1560 1561 1562
    """
    Calculates determinant value of a square matrix or batches of square matrices.
    Args:
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size
                    `(*, n, n)` where `*` is one or more batch dimensions.
    Returns:
        y (Tensor):the determinant value of a square matrix or batches of square matrices.

1563
    Examples:
H
huangxu96 已提交
1564 1565 1566 1567 1568 1569
        .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1570
        A = paddle.linalg.det(x)
H
huangxu96 已提交
1571 1572

        print(A)
1573

H
huangxu96 已提交
1574 1575
        # [ 0.02547996,  2.52317095, -6.15900707])

1576

H
huangxu96 已提交
1577
    """
Z
zhiboniu 已提交
1578
    if paddle.in_dynamic_mode():
1579
        return _C_ops.determinant(x)
H
huangxu96 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]})
    return out


1602
def slogdet(x, name=None):
H
huangxu96 已提交
1603 1604 1605
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1606

H
huangxu96 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1618
    Examples:
H
huangxu96 已提交
1619 1620 1621 1622 1623 1624
    .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1625
        A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1626 1627

        print(A)
1628

H
huangxu96 已提交
1629 1630 1631 1632
        # [[ 1.        ,  1.        , -1.        ],
        # [-0.98610914, -0.43010661, -0.10872950]])

    """
Z
zhiboniu 已提交
1633
    if paddle.in_dynamic_mode():
1634
        return _C_ops.slogdeterminant(x)
H
huangxu96 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]})
    return out


1657 1658
def svd(x, full_matrices=False, name=None):
    r"""
1659 1660 1661 1662 1663
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1664 1665
        X = U * diag(S) * VT

1666 1667
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1668
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1669 1670 1671 1672
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
1673
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1674
            If full_matrices = False, svd op will use a economic method to store U and V.
1675
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
1676
        name (str, optional): Name for the operation (optional, default is None).
1677
            For more information, please refer to :ref:`api_guide_Name`.
1678 1679

    Returns:
1680
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1681

1682 1683 1684 1685
    Examples:
        .. code-block:: python

            import paddle
1686 1687 1688

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1689
            u, s, vh = paddle.linalg.svd(x)
1690 1691 1692 1693 1694
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1695
            print (s)
1696
            #S = [8.14753743, 0.78589688]
1697
            print (vh)
1698 1699
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1700

1701
            # one can verify : U * S * VT == X
1702
            #                  U * UH == I
1703
            #                  V * VH == I
1704 1705
    """

Z
zhiboniu 已提交
1706
    if paddle.in_dynamic_mode():
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        return _C_ops.svd(x, 'full_matrices', full_matrices)
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
        outputs={'U': u,
                 'VH': vh,
                 'S': s},
X
xiongkun 已提交
1722
        attrs=attrs, )
1723 1724 1725
    return u, s, vh


1726 1727 1728
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
1729

1730 1731 1732 1733 1734
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1735

1736 1737 1738 1739
    Specifically,

    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power
    of `n`.
1740

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to
    the power of `abs(n)`.

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1751
        name (str, optional): Name for the operation (optional, default is None).
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1766
            print(paddle.linalg.matrix_power(x, 2))
1767 1768 1769 1770
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1771
            print(paddle.linalg.matrix_power(x, 0))
1772 1773 1774 1775
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

1776
            print(paddle.linalg.matrix_power(x, -2))
1777 1778 1779 1780
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
1781 1782 1783 1784
    if in_dygraph_mode():
        return _C_ops.final_state_matrix_power(x, n)

    if _in_legacy_dygraph():
1785
        return _C_ops.matrix_power(x, "n", n)
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='matrix_power',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'n': n})
    return out
1797 1798


1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
            positive number. The data type of x should be float32 or float64. 
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced". 
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
            If mode = "reduced", qr op will return reduced Q and R matrices, 
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
            If mode = "complete", qr op will return complete Q and R matrices, 
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
            
    Returns:
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R. 
        If mode = "r", qr will return a tensor which represents R.
        
    Examples:            
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
            
            # one can verify : X = Q * R ;     
    """
Z
zhiboniu 已提交
1841
    if paddle.in_dynamic_mode():
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
        q, r = _C_ops.qr(x, 'mode', mode)
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
    helper.append_op(
        type='qr', inputs={'X': [x]}, outputs={'Q': q,
                                               'R': r}, attrs=attrs)
    if mode == "r":
        return r
    else:
        return q, r


1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
    Computes the LU factorization of an N-D(N>=2) matrix x. 

    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and 
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])
    # return ones

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
            
    Returns:
        factorization (Tensor): LU matrix, the factorization of input X.

        pivots (IntTensor): the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the 
                    intermediate transpositions of rows. The final permutation `perm` could be 
                    reconstructed by this, details refer to upper example.

        infos (IntTensor, optional): if `get_infos` is `True`, this is a tensor of size (∗(N-2)) 
                    where non-zero values indicate whether factorization for the matrix or each minibatch 
                    has succeeded or failed.

        
    Examples:            
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
            
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
            # [1., 0., 0.]]), 
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
            # [0.60000000, 0.50000000]]), 
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))
            

            # one can verify : X = P @ L @ U ;     
    """
Z
zhiboniu 已提交
1940
    if paddle.in_dynamic_mode():
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
        LU, Piv, Info = _C_ops.lu(x, 'pivots', pivot)
        if get_infos:
            return LU, Piv, Info
        else:
            return LU, Piv
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
    helper = LayerHelper('lu', **locals())
    lu = helper.create_variable_for_type_inference(dtype=x.dtype)
    p = helper.create_variable_for_type_inference(dtype='int')
    info = helper.create_variable_for_type_inference(dtype='int')
    attrs = dict()
    attrs['pivots'] = pivot
    helper.append_op(
        type='lu',
        inputs={'X': x},
        outputs={'Out': lu,
                 'Pivots': p,
                 'Infos': info},
        attrs=attrs)
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
    Unpack L U and P to single matrix tensor . 
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
            
    Returns:
        P (Tensor): Permutation matrix P of lu factorization.

        L (Tensor): The lower triangular matrix tensor of lu factorization.

        U (Tensor): The upper triangular matrix tensor of lu factorization.

        
    Examples:            
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
            
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
            # [1., 0., 0.]]), 
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
            # [0.60000000, 0.50000000]]), 
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

            # one can verify : X = P @ L @ U ;   
    """

Z
zhiboniu 已提交
2037
    if paddle.in_dynamic_mode():
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
        P, L, U = _C_ops.lu_unpack(x, y, 'unpack_ludata', unpack_ludata,
                                   'unpack_pivots', unpack_pivots)
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
    helper.append_op(
        type='lu_unpack',
        inputs={'X': x,
                'Pivots': y},
        outputs={'Pmat': p,
                 'L': l,
                 'U': u},
        attrs=attrs)
    return p, l, u


L
Lijunhui 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
def eig(x, name=None):
    """
    This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices.

    .. note::
        If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        This API is only supported on CPU device.
        The output datatype is always complex for both real and complex input.

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
        name (str, optional): The default value is `None`. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.device.set_device("cpu")

            x_data = np.array([[1.6707249, 7.2249975, 6.5045543],
                               [9.956216,  8.749598,  6.066444 ],
                               [4.4251957, 1.7983172, 0.370647 ]]).astype("float32")
            x = paddle.to_tensor(x_data)
            w, v = paddle.linalg.eig(x)
            print(w)
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

            print(v)
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
Z
zhiboniu 已提交
2110
    if paddle.in_dynamic_mode():
L
Lijunhui 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
        w, v = _C_ops.eig(x)
        return w, v

    check_variable_and_dtype(
        x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig')
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2128 2129 2130
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2131 2132 2133

    Warning:
        The gradient kernel of this operator does not yet developed.
2134 2135 2136 2137
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2138
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2139
            Its data type should be float32, float64, complex64, or complex128.
2140
        name (str, optional): Name for the operation (optional, default is None).
2141
            For more information, please refer to :ref:`api_guide_Name`.
2142
            
2143
    Returns:
2144
        Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.
2145 2146 2147 2148 2149 2150
            The eigenvalues are complex-valued even when `x` is real.

    Examples:
        .. code-block:: python

            import paddle
2151

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    check_variable_and_dtype(x, 'dtype',
2165 2166
                             ['float32', 'float64', 'complex64',
                              'complex128'], 'eigvals')
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".
            format(len(x_shape), x_shape))

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".
            format(x_shape))

Z
zhiboniu 已提交
2179
    if paddle.in_dynamic_mode():
2180 2181 2182 2183 2184 2185 2186 2187
        return _C_ops.eigvals(x)

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2188 2189 2190 2191
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2192
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        # A * B
        A_data = np.random.random([3, 4]).astype(np.float32)
        B_data = np.random.random([4, 5]).astype(np.float32)
        A = paddle.to_tensor(A_data)
        B = paddle.to_tensor(B_data)
2234
        out = paddle.linalg.multi_dot([A, B])
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
        print(out.numpy().shape)
        # [3, 5]

        # A * B * C
        A_data = np.random.random([10, 5]).astype(np.float32)
        B_data = np.random.random([5, 8]).astype(np.float32)
        C_data = np.random.random([8, 7]).astype(np.float32)
        A = paddle.to_tensor(A_data)
        B = paddle.to_tensor(B_data)
        C = paddle.to_tensor(C_data)
2245
        out = paddle.linalg.multi_dot([A, B, C])
2246 2247 2248 2249
        print(out.numpy().shape)
        # [10, 7]

    """
Z
zhiboniu 已提交
2250
    if paddle.in_dynamic_mode():
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
        return _C_ops.multi_dot(x)

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
        check_variable_and_dtype(item, 'x[' + str(id) + ']',
                                 ['float16', 'float32', 'float64'], 'multi_dot')
        if item.dtype != x[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2266 2267 2268 2269


def eigh(x, UPLO='L', name=None):
    """
2270
    Compute the eigenvalues and eigenvectors of a
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64. The eigenvalues of eigh op.
        out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,complex64 and complex128. The eigenvectors of eigh op.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
2294
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2295 2296 2297 2298 2299 2300 2301
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2302 2303 2304 2305
    if in_dygraph_mode():
        return _C_ops.final_state_eigh(x, UPLO)

    if _in_legacy_dygraph():
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
        return _C_ops.eigh(x, 'UPLO', UPLO)

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
                "The input matrix must be batches of square matrices. But received x's dimention: {}".
                format(x_shape))
2318
        if UPLO != 'L' and UPLO != 'U':
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigh')

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='eigh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value,
                 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO})
    return out_value, out_vector
A
andyjpaddle 已提交
2338 2339 2340 2341


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2342
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2353

A
andyjpaddle 已提交
2354 2355 2356
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2357 2358 2359
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2360 2361 2362 2363
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2364 2365 2366 2367
        rcond(Tensor, optional): the tolerance value to determine
            when is a singular value zero. Defalut:1e-15.

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2368
            if complex or symmetric if real. Default: False.
2369 2370

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2371
            the layer will be named automatically.
2372

A
andyjpaddle 已提交
2373
    Returns:
2374
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2375
        pseudo inverse of x. Its shape should be (*, n, m).
2376

A
andyjpaddle 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """

Z
zhiboniu 已提交
2404
    if paddle.in_dynamic_mode():
A
andyjpaddle 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
        if not hermitian:
            # combine svd and matmul op
            u, s, vt = _C_ops.svd(x, 'full_matrices', False)
            max_singular_val = _C_ops.reduce_max(s, 'dim', [-1], 'keep_dim', True, \
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
            cond_int = layers.cast(condition, s.dtype)
            cond_not_int = layers.cast(layers.logical_not(condition), s.dtype)
            out1 = layers.elementwise_mul(1 / s, cond_int)
            out2 = layers.elementwise_mul(1 / y, cond_not_int)
            singular = layers.elementwise_add(out1, out2)
            st, _ = _C_ops.unsqueeze2(singular, 'axes', [-2])

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v, _ = _C_ops.transpose2(vt, 'axis', perm)

            out_1 = v * st
            out_2 = _C_ops.matmul_v2(out_1, u, 'trans_x', False, 'trans_y',
                                     True)
            return out_2
        else:
            # combine eigh and matmul op
            s, u = _C_ops.eigh(x, 'UPLO', 'L')
            s_abs = paddle.abs(s)
            max_singular_val = _C_ops.reduce_max(s_abs, 'dim', [-1], 'keep_dim', True, \
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = layers.cast(condition, s.dtype)
            cond_not_int = layers.cast(layers.logical_not(condition), s.dtype)
            out1 = layers.elementwise_mul(1 / s, cond_int)
            out2 = layers.elementwise_mul(1 / y, cond_not_int)
            singular = layers.elementwise_add(out1, out2)
            st, _ = _C_ops.unsqueeze2(singular, 'axes', [-2])

            out_1 = u * st
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul_v2(out_1, u_conj, 'trans_x', False, 'trans_y',
                                     True)
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
                outputs={'U': u,
                         'VH': vt,
                         'S': s},
                attrs={'full_matrices': False}, )

            max_singular_val = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1],
                       'keep_dim': True,
                       'reduce_all': False})

            rcond = layers.fill_constant(shape=[1], value=rcond, dtype=dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = layers.fill_constant(shape=[1], value=y, dtype=dtype)

            condition = s > cutoff
            cond_int = layers.cast(condition, dtype)
            cond_not_int = layers.cast(layers.logical_not(condition), dtype)
            out1 = layers.elementwise_mul(1 / s, cond_int)
            out2 = layers.elementwise_mul(1 / y, cond_not_int)
            singular = layers.elementwise_add(out1, out2)

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st,
                         'XShape': st_shape})

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v],
                         'XShape': [v_shape]},
                attrs={'axis': perm})

            out_1 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v,
                        'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1,
                       'use_mkldnn': False})
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': out_1,
                        'Y': u},
                outputs={'Out': out_2},
                attrs={'trans_x': False,
                       'trans_y': True}, )
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2536 2537
                x, 'dtype', ['float32', 'float64', 'complex64',
                             'complex128'], 'pinv')
A
andyjpaddle 已提交
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s,
                         'Eigenvectors': u},
                attrs={'UPLO': 'L'})
            s_abs = helper.create_variable_for_type_inference(s_type)
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs})
            max_singular_val = helper.create_variable_for_type_inference(s_type)
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1],
                       'keep_dim': True,
                       'reduce_all': False})

            rcond = layers.fill_constant(shape=[1], value=rcond, dtype=s_type)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = layers.fill_constant(shape=[1], value=y, dtype=s_type)

            condition = s_abs > cutoff
            cond_int = layers.cast(condition, s_type)
            cond_not_int = layers.cast(layers.logical_not(condition), s_type)
            out1 = layers.elementwise_mul(1 / s, cond_int)
            out2 = layers.elementwise_mul(1 / y, cond_not_int)
            singular = layers.elementwise_add(out1, out2)

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st,
                         'XShape': st_shape})

            out_1 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u,
                        'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1,
                       'use_mkldnn': False})
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]})

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': out_1,
                        'Y': u_conj},
                outputs={'Out': out_2},
                attrs={'trans_x': False,
                       'trans_y': True}, )
            return out_2
W
Weilong Wu 已提交
2610 2611 2612 2613 2614 2615 2616


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2617

W
Weilong Wu 已提交
2618 2619 2620 2621
    .. math::
        Out = X^-1 * Y
    Specifically,
    - This system of linear equations has one solution if and only if input 'X' is invertible.
2622

W
Weilong Wu 已提交
2623 2624 2625 2626 2627
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2628
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2629
            For more information, please refer to :ref:`api_guide_Name`.
2630

W
Weilong Wu 已提交
2631
    Returns:
2632
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2633
        Its data type should be the same as that of `x`.
2634

W
Weilong Wu 已提交
2635 2636
    Examples:
    .. code-block:: python
2637

W
Weilong Wu 已提交
2638 2639 2640
        # a square system of linear equations:
        # 2*X0 + X1 = 9
        # X0 + 2*X1 = 8
2641

W
Weilong Wu 已提交
2642 2643
        import paddle
        import numpy as np
2644

W
Weilong Wu 已提交
2645 2646 2647 2648 2649
        np_x = np.array([[3, 1],[1, 2]])
        np_y = np.array([9, 8])
        x = paddle.to_tensor(np_x, dtype="float64")
        y = paddle.to_tensor(np_y, dtype="float64")
        out = paddle.linalg.solve(x, y)
2650

W
Weilong Wu 已提交
2651 2652 2653
        print(out)
        # [2., 3.])
    """
Z
zhiboniu 已提交
2654
    if paddle.in_dynamic_mode():
W
Weilong Wu 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
        return _C_ops.solve(x, y)

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="solve", inputs={"X": x,
                              "Y": y}, outputs={"Out": out})
    return out
2667 2668


2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
def triangular_solve(x,
                     y,
                     upper=True,
                     transpose=False,
                     unitriangular=False,
                     name=None):
    r"""
    Computes the solution of a system of equations with a triangular coefficient matrix `x` and
    multiple right-hand sides `y` .

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is 
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular 
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed 
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
    .. code-block:: python

        # a square system of linear equations:
        # x1 +   x2  +   x3 = 0
        #      2*x2  +   x3 = -9
        #               -x3 = 5

        import paddle
        import numpy as np

        x = paddle.to_tensor([[1, 1, 1], 
                              [0, 2, 1],
                              [0, 0,-1]], dtype="float64")
        y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.triangular_solve(x, y, upper=True)

        print(out)
        # [7, -2, -5]
    """
Z
zhiboniu 已提交
2718
    if paddle.in_dynamic_mode():
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
        return _C_ops.triangular_solve(x, y, 'upper', upper, 'transpose',
                                       transpose, 'unitriangular',
                                       unitriangular)

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='triangular_solve',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={
            'upper': upper,
            'transpose': transpose,
            'unitriangular': unitriangular
        })
    return out


Z
zhiboniu 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is 
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
    .. code-block:: python

        import paddle

        u = paddle.to_tensor([[1, 1, 1], 
                                [0, 2, 1],
                                [0, 0,-1]], dtype="float64")
        b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.cholesky_solve(b, u, upper=True)

        print(out)
        # [-2.5, -7, 9.5]
    """
H
hong 已提交
2775 2776 2777 2778
    if in_dygraph_mode():
        return _C_ops.final_state_cholesky_solve(x, y, upper)

    if _in_legacy_dygraph():
Z
zhiboniu 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
        return _C_ops.cholesky_solve(x, y, 'upper', upper)

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='cholesky_solve',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'upper': upper})
    return out


2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
def eigvalsh(x, UPLO='L', name=None):
    """
    Computes the eigenvalues of a 
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
            #[0.17157288, 5.82842712]
    """
Z
zhiboniu 已提交
2822
    if paddle.in_dynamic_mode():
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
        is_test = x.stop_gradient
        values, _ = _C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
                "The input matrix must be batches of square matrices. But received x's dimention: {}".
                format(x_shape))
2837
        if UPLO != 'L' and UPLO != 'U':
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvalsh')

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
    helper.append_op(
        type='eigvalsh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value,
                 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO,
               'is_test': is_test})
    return out_value
2860 2861


2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y`` 
            should be one of float32, float64.
        rcond(float, optional): The default value is None. A float pointing number used to determine 
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the 
            machine precision of x_dtype.
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For 
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only 
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’ 
            for CUDA inputs.
        name(str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``). 
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals`` 
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed 
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor 
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in 
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with 
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when 
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".
                format(driver))
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".
                format(driver))
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

Z
zhiboniu 已提交
2950
    if paddle.in_dynamic_mode():
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
        solution, rank, singular_values = _C_ops.lstsq(x, y, "rcond", rcond,
                                                       "driver", driver)
        if x.shape[-2] > x.shape[-1]:
            matmul_out = _varbase_creator(dtype=x.dtype)
            _C_ops.matmul(x, solution, matmul_out, 'trans_x', False, 'trans_y',
                          False)
            minus_out = _C_ops.elementwise_sub(matmul_out, y)
            pow_out = _C_ops.pow(minus_out, 'factor', 2)
            residuals = _C_ops.reduce_sum(pow_out, 'dim', [-2], 'keepdim',
                                          False, 'reduce_all', False)
        else:
            residuals = paddle.empty(shape=[0], dtype=x.dtype)

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq')
    check_variable_and_dtype(
        y, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq')

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='lstsq',
        inputs={'X': x,
                'Y': y},
        outputs={
            'Solution': solution,
            'Rank': rank,
            'SingularValues': singular_values
        },
        attrs={'rcond': rcond,
               'driver': driver})

    matmul_out = helper.create_variable_for_type_inference(dtype=x.dtype)
    minus_out = helper.create_variable_for_type_inference(dtype=x.dtype)
    pow_out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='matmul_v2',
        inputs={'X': x,
                'Y': solution},
        outputs={'Out': matmul_out},
        attrs={
            'trans_x': False,
            'trans_y': False,
        })

    helper.append_op(
        type='elementwise_sub',
        inputs={'X': matmul_out,
                'Y': y},
        outputs={'Out': minus_out})

    helper.append_op(
        type='pow',
        inputs={'X': minus_out},
        outputs={'Out': pow_out},
        attrs={'factor': 2})

    helper.append_op(
        type='reduce_sum',
        inputs={'X': pow_out},
        outputs={'Out': residuals},
        attrs={'dim': [-2],
               'keep_dim': False,
               'reduce_all': False})

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values