linalg.py 34.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from paddle.common_ops_import import *
Z
Zhang Ting 已提交
17 18
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type
19
from ..fluid.framework import in_dygraph_mode, _varbase_creator
20

21 22
from ..fluid.layers import transpose  #DEFINE_ALIAS

23 24
__all__ = [
    'matmul',
L
liuwei1031 已提交
25
    'dot',
26
    #       'einsum',
27
    'norm',
28
    'transpose',
Z
Zhang Ting 已提交
29
    'dist',
30
    't',
31
    'cross',
G
Guo Sheng 已提交
32
    'cholesky',
33
    #       'tensordot',
Q
Qi Li 已提交
34 35
    'bmm',
    'histogram'
36 37 38
]


S
ShenLiang 已提交
39
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
40
    """
S
ShenLiang 已提交
41 42 43
    Applies matrix multiplication to two tensors. `matmul` follows 
    the complete broadcast rules, 
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
44

S
ShenLiang 已提交
45 46
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
47 48 49 50 51

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
S
ShenLiang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor 
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas 
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

    - If the `x` is 1-dimensional and the `y` is 2-dimensional, 
      a `1` is prepended to its dimension in order to conduct the matrix multiply. 
      After the matrix multiply, the prepended dimension is removed.
      
    - If the `x` is 2-dimensional and `y` is 1-dimensional, 
      the matrix-vector product is obtained.

    - If both arguments are at least 1-dimensional and at least one argument 
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained. 
      If the first argument is 1-dimensional, a 1 is prepended to its dimension 
      in order to conduct the batched matrix multiply and removed after. 
      If the second argument is 1-dimensional, a 1 is appended to its 
      dimension for the purpose of the batched matrix multiple and removed after. 
      The non-matrix (exclude the last two dimensions) dimensions are 
      broadcasted according the broadcast rule. 
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor, 
      out will be a (j, k, n, p) tensor.
79 80

    Args:
S
ShenLiang 已提交
81 82
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
83 84 85 86 87 88
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
89
        Tensor: The output Tensor.
90 91 92

    Examples:

S
ShenLiang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
        # vector * vector
        x_data = np.random.random([10]).astype(np.float32)
        y_data = np.random.random([10]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [1]

        # matrix * vector
        x_data = np.random.random([10, 5]).astype(np.float32)
        y_data = np.random.random([5]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10]

        # batched matrix * broadcasted vector
        x_data = np.random.random([10, 5, 2]).astype(np.float32)
        y_data = np.random.random([2]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10, 5]

        # batched matrix * batched matrix
        x_data = np.random.random([10, 5, 2]).astype(np.float32)
        y_data = np.random.random([10, 2, 5]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10, 5, 5]

        # batched matrix * broadcasted matrix
        x_data = np.random.random([10, 1, 5, 2]).astype(np.float32)
        y_data = np.random.random([1, 3, 2, 5]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10, 3, 5, 5]
143 144

    """
S
ShenLiang 已提交
145 146 147 148 149
    op_type = 'matmul_v2'
    if in_dygraph_mode():
        op = getattr(core.ops, op_type)
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

150
    attrs = {
S
ShenLiang 已提交
151 152
        'trans_x': transpose_x,
        'trans_y': transpose_y,
153 154 155 156 157
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
158 159
            check_variable_and_dtype(val, name, ['float32', 'float64'],
                                     'matmul')
160 161 162

    __check_input(x, y)

S
ShenLiang 已提交
163
    helper = LayerHelper('matmul_v2', **locals())
164 165
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
S
ShenLiang 已提交
166
        type='matmul_v2',
167 168 169 170 171
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs=attrs)
    return out
Z
Zhang Ting 已提交
172 173


myq406450149's avatar
myq406450149 已提交
174
def norm(x, p='fro', axis=None, keepdim=False, name=None):
175
    """
176 177
	:alias_main: paddle.norm
	:alias: paddle.norm,paddle.tensor.norm,paddle.tensor.linalg.norm
S
swtkiwi 已提交
178

179 180 181 182
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

    Args:
myq406450149's avatar
myq406450149 已提交
183
        x (Tensor): The input tensor could be N-D tensor, and the input data
184
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
185 186 187 188 189
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
           `inf`,`-inf` and any positive real number yielding the corresponding p-norm.
            Not supported: ord < 0, nuclear norm.
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
190
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
191
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of norm operation on the specified axis of input tensor,
        it's data type is the same as input's Tensor.
 
    Raises:
        TypeError, if out data type is different with the input data type.
        ValueError, If `p` or `axis` is invalid.
    
    Examples:
        .. code-block:: python
            
            import paddle
myq406450149's avatar
myq406450149 已提交
211 212 213 214 215 216 217 218 219
            import numpy as np
            paddle.disable_static()
            shape=[2, 3, 4]
            np_input = np.arange(24).astype('float32') - 12
            np_input = np_input.reshape(shape)
            x = paddle.to_tensor(np_input)
            #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
            # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]

220
            # compute frobenius norm along last two dimensions.
myq406450149's avatar
myq406450149 已提交
221 222 223
            out_fro = paddle.norm(x, p='fro', axis=[0,1])
            # out_fro.numpy() [17.435596 16.911535 16.7332   16.911535]

224 225
            # compute 2-order vector norm along last dimension.
            out_pnorm = paddle.norm(x, p=2, axis=-1)
myq406450149's avatar
myq406450149 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
            #out_pnorm.numpy(): [[21.118711  13.190906   5.477226]
            #                    [ 3.7416575 11.224972  19.131126]]

            # compute 2-order  norm along [0,1] dimension.
            out_pnorm = paddle.norm(x, p=2, axis=[0,1])
            #out_pnorm.numpy(): [17.435596 16.911535 16.7332   16.911535]

            # compute inf-order  norm
            out_pnorm = paddle.norm(x, p=np.inf)
            #out_pnorm.numpy()  = [12.]
            out_pnorm = paddle.norm(x, p=np.inf, axis=0)
            #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]

            # compute -inf-order  norm
            out_pnorm = paddle.norm(x, p=-np.inf)
            #out_pnorm.numpy(): [0.]
            out_pnorm = paddle.norm(x, p=-np.inf, axis=0)
            #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
244 245
    """

myq406450149's avatar
myq406450149 已提交
246
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
247 248 249 250 251 252 253 254 255 256 257
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
myq406450149's avatar
myq406450149 已提交
258 259 260 261
        if in_dygraph_mode():
            if dim is None: dim = [-1]
            return core.ops.frobenius_norm(input, 'dim', dim, 'keepdim',
                                           keepdim)
262 263 264 265 266 267 268 269 270 271 272
        attrs = {
            'dim': dim if dim != None else [-2, -1],
            'keep_dim': keepdim,
            'reduce_all': False
        }
        if len(attrs['dim']) == len(input.shape):
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
273 274
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
275 276 277 278 279 280 281 282 283 284 285 286

        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs)
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
myq406450149's avatar
myq406450149 已提交
287
                    asvector=False,
288 289 290 291 292 293 294 295 296
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
myq406450149's avatar
myq406450149 已提交
297 298 299 300
        if in_dygraph_mode():
            if axis is None: axis = -1
            return core.ops.p_norm(input, 'porder', porder, 'axis', axis,
                                   'keepdim', keepdim, 'asvector', asvector)
301 302 303 304
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
myq406450149's avatar
myq406450149 已提交
305 306 307
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

308 309 310 311
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
312
            'asvector': asvector,
313 314 315
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
316 317
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
318 319 320 321 322 323 324 325

        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs)
        return out

myq406450149's avatar
myq406450149 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    def inf_norm(input,
                 porder=None,
                 axis=axis,
                 keepdim=False,
                 asvector=False,
                 name=None):
        helper = LayerHelper('frobenius_norm', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

        reduce_all = True if axis == None or axis == [] or asvector == True else False
        axis = axis if axis != None and axis != [] else [0]

        reduce_type = 'reduce_max' if porder == np.float(
            'inf') else 'reduce_min'
        helper.append_op(
            type=reduce_type,
            inputs={'X': out},
            outputs={'Out': reduce_out},
            attrs={'dim': axis,
                   'keep_dim': keepdim,
                   'reduce_all': reduce_all})

        return reduce_out

    def p0_matrix_norm(input, porder=0., axis=axis, keepdim=False, name=None):
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

        cast_out = block.create_variable_for_type_inference(dtype=bool)
        block.append_op(
            type='cast',
            inputs={'X': input},
            outputs={'Out': cast_out},
            attrs={
                'in_dtype': input.dtype,
                'out_dtype': int(core.VarDesc.VarType.BOOL)
            })
        cast_out2 = block.create_variable_for_type_inference(dtype=bool)
        block.append_op(
            type='cast',
            inputs={'X': cast_out},
            outputs={'Out': cast_out2},
            attrs={
                'in_dtype': cast_out.dtype,
                'out_dtype': int(core.VarDesc.VarType.FP32)
            })
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        block.append_op(
            type='reduce_sum',
            inputs={'X': cast_out2},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False
            })
        return sum_out

    def p_matrix_norm(input, porder=1., axis=axis, keepdim=False, name=None):
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out})
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder})
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False
            })
        porder
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1. / porder)})
        return out

425 426 427
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
428
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
429 430 431 432 433
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
            return vector_norm(
myq406450149's avatar
myq406450149 已提交
434 435 436 437 438 439
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name)
440 441 442 443
        else:
            raise ValueError("only valid p type is string or float, found {}".
                             format(type(p)))

myq406450149's avatar
myq406450149 已提交
444 445
    if isinstance(axis, tuple):
        axis = list(axis)
446 447 448 449 450 451 452
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
        if isinstance(p, (int, float)):
            return vector_norm(
myq406450149's avatar
myq406450149 已提交
453 454 455 456 457 458
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name)
459 460 461 462 463 464 465
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
466 467 468 469 470
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == 0:
            return p0_matrix_norm(x, axis=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
471
        else:
myq406450149's avatar
myq406450149 已提交
472 473
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name)
474 475 476 477 478 479
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


Z
Zhang Ting 已提交
480 481
def dist(x, y, p=2):
    """
482 483
	:alias_main: paddle.dist
	:alias: paddle.dist,paddle.tensor.dist,paddle.tensor.linalg.dist
S
swtkiwi 已提交
484

Z
Zhang Ting 已提交
485
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
486 487
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

    When p = inf, the inf-norm of z is the maximum element of z.

    .. math::

        ||z||_\infty=\max_i |z_i|

    When p = -inf, the negative-inf-norm of z is the minimum element of z.

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
        x (Variable): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Variable): 1-D to 6-D Tensor, its data type is float32 or float64.
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
        Variable: Tensor that is the p-norm of (x - y).

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(np.array([[3, 3],[3, 3]]).astype(np.float32))
                y = fluid.dygraph.to_variable(np.array([[3, 3],[3, 1]]).astype(np.float32))
                out = paddle.dist(x, y, 0)
                print(out.numpy()) # out = [1.]

                out = paddle.dist(x, y, 2)
                print(out.numpy()) # out = [2.]

                out = paddle.dist(x, y, float("inf"))
                print(out.numpy()) # out = [2.]

                out = paddle.dist(x, y, float("-inf"))
                print(out.numpy()) # out = [0.]
    """
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
liuwei1031 已提交
579 580 581 582 583 584 585


def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
   
    .. note::
S
ShenLiang 已提交
586 587
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix 
       is the batch dimension, which means that the vectors of multiple batches are dotted. 
L
liuwei1031 已提交
588 589

    Parameters:
S
ShenLiang 已提交
590 591
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
592 593
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

594
    Returns:
595
        Variable: the calculated result Tensor.
596

L
liuwei1031 已提交
597 598 599 600 601 602
    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
603 604 605 606

        paddle.disable_static()
        x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32)
        y_data = np.random.uniform(1, 3, [10]).astype(np.float32)
S
ShenLiang 已提交
607 608
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
609 610
        z = paddle.dot(x, y)
        print(z.numpy())
L
liuwei1031 已提交
611 612 613

    """
    op_type = 'dot'
614 615 616 617 618
    # skip var type check in dygraph mode to improve efficiency
    if in_dygraph_mode():
        op = getattr(core.ops, op_type)
        return op(x, y)

L
liuwei1031 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
    helper.append_op(
        type="dot", inputs={'X': x,
                            'Y': y}, attrs={}, outputs={"Out": out})
    return out
637 638 639 640


def t(input, name=None):
    """
641 642
	:alias_main: paddle.t
	:alias: paddle.t,paddle.tensor.t,paddle.tensor.linalg.t
S
swtkiwi 已提交
643

644 645 646 647 648
    Transpose <=2-D tensor. 
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to 
    the fluid.layers.transpose function which perm dimensions set 0 and 1.
    
    Args:
649
        input (Variable): The input Tensor. It is a N-D (N<=2) Tensor of data types float16, float32, float64, int32.
650 651 652
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
653
        Variable: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
    
    For Example:
        .. code-block:: text
        # Example 1 (0-D tensor)
         x = tensor([0.79])
         paddle.t(x) = tensor([0.79])
         # Example 2 (1-D tensor)
         x = tensor([0.79, 0.84, 0.32])
         paddle.t(x) = tensor([0.79, 0.84, 0.32])
        
         # Example 3 (2-D tensor)
         x = tensor([0.79, 0.84, 0.32],
                    [0.64, 0.14, 0.57])
         paddle.t(x) = tensor([0.79, 0.64],
                              [0.84, 0.14],
                              [0.32, 0.57])
    
     Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3],
                            dtype='float32')
            x_transposed = paddle.t(x)
            print x_transposed.shape
            #(3L, 2L)
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
        out, _ = core.ops.transpose2(input, 'axis', perm)
        return out

    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': [1, 0]})
    return out
711 712


713
def cross(x, y, axis=None, name=None):
714
    """
715 716
	:alias_main: paddle.cross
	:alias: paddle.cross,paddle.tensor.cross,paddle.tensor.linalg.cross
S
swtkiwi 已提交
717

718 719 720
    Computes the cross product between two tensors along an axis.
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
721 722
    
    Args:
723 724 725 726 727
        x (Variable): The first input tensor variable.
        y (Variable): The second input tensor variable.
        axis (int, optional): The axis along which to compute the cross product. It defaults to the first axis found with the length 3.
        name (str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
728 729

    Returns:
730
        Variable: A Tensor with same data type as `x`.
731 732 733 734
        
    Examples:
        .. code-block:: python
            import paddle
735
            from paddle import to_variable
736 737
            import numpy as np

738
            paddle.disable_static()
739

740 741 742 743 744 745
            data_x = np.array([[1.0, 1.0, 1.0],
                               [2.0, 2.0, 2.0],
                               [3.0, 3.0, 3.0]])
            data_y = np.array([[1.0, 1.0, 1.0],
                               [1.0, 1.0, 1.0],
                               [1.0, 1.0, 1.0]])
746 747 748 749 750 751 752 753 754 755 756 757 758 759
            x = to_variable(data_x)
            y = to_variable(data_y)

            z1 = paddle.cross(x, y)
            print(z1.numpy())
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            print(z2.numpy())
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
760 761
    """
    if in_dygraph_mode():
762
        if axis is not None:
763
            return core.ops.cross(x, y, 'dim', axis)
764
        else:
765
            return core.ops.cross(x, y)
766

767 768
    helper = LayerHelper("cross", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
769
    attrs = dict()
770
    attrs['dim'] = axis
771 772 773

    helper.append_op(
        type='cross',
774 775
        inputs={'X': x,
                'Y': y},
776 777 778
        outputs={'Out': out},
        attrs=attrs)
    return out
779 780


781
def cholesky(x, upper=False, name=None):
G
Guo Sheng 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
    """
    Computes the Cholesky decomposition of one symmetric positive-definite
    matrix or batches of symmetric positive-definite matrice. 
    
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
        x (Variable): The input tensor. Its shape should be `[*, M, M]`,
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.

    Returns:
        Variable: A Tensor with same shape and data type as `x`. It represents \
            triangular matrices generated by Cholesky decomposition.
        
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

809 810 811 812 813 814 815 816 817 818
            paddle.disable_static()
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
            x = paddle.to_variable(x_data)
            out = paddle.cholesky(x, upper=False)
            print(out.numpy())
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
819 820

    """
821 822
    if in_dygraph_mode():
        return core.ops.cholesky(x, "upper", upper)
G
Guo Sheng 已提交
823 824 825 826 827 828 829 830 831 832 833 834
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper})
    return out


835 836
def bmm(x, y, name=None):
    """
837 838
	:alias_main: paddle.bmm
	:alias: paddle.bmm,paddle.tensor.bmm,paddle.tensor.linalg.bmm
S
swtkiwi 已提交
839

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a Tensor or LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        import paddle
Y
yaoxuefeng 已提交
857 858

        # In imperative mode:
859 860 861 862
        # size input1: (2, 2, 3) and input2: (2, 3, 2)
        input1 = np.array([[[1.0, 1.0, 1.0],[2.0, 2.0, 2.0]],[[3.0, 3.0, 3.0],[4.0, 4.0, 4.0]]])
        input2 = np.array([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],[[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])

863
        paddle.disable_static()
Y
yaoxuefeng 已提交
864
        
865 866
        x = paddle.to_variable(input1)
        y = paddle.to_variable(input2)
Y
yaoxuefeng 已提交
867 868 869 870 871
        out = paddle.bmm(x, y)
        #output size: (2, 2, 2)
        #output value:
        #[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]]
        out_np = out.numpy()
872
    """
Y
yaoxuefeng 已提交
873 874 875 876 877 878 879 880 881 882
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".
            format(x_shape, y_shape))
    if x_shape[2] != y_shape[1]:
        raise ValueError(
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".
            format(x_shape, y_shape))
883 884 885 886 887 888
    helper = LayerHelper('bmm', **locals())
    if in_dygraph_mode():
        return core.ops.bmm(x, y)
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909


def histogram(input, bins=100, min=0, max=0):
    """
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max. 
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
        input (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
            should be float32, float64, int32, int64.
        bins (int): number of histogram bins
        min (int): lower end of the range (inclusive)
        max (int): upper end of the range (inclusive)

    Returns:
        Variable: Tensor or LoDTensor calculated by histogram layer. The data type is int64.

    Code Example 1:
        .. code-block:: python
            import paddle
            import numpy as np
910 911 912
            startup_program = paddle.static.Program()
            train_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
Q
Qi Li 已提交
913 914 915
                inputs = paddle.data(name='input', dtype='int32', shape=[2,3])
                output = paddle.histogram(inputs, bins=5, min=1, max=5)
                place = paddle.CPUPlace()
916
                exe = paddle.static.Executor(place)
Q
Qi Li 已提交
917 918 919 920 921 922 923 924 925 926 927
                exe.run(startup_program)
                img = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int32)
                res = exe.run(train_program,
                              feed={'input': img},
                              fetch_list=[output])
                print(np.array(res[0])) # [0,3,0,2,1]

    Code Example 2:
        .. code-block:: python
            import paddle
            import numpy as np
928 929 930 931 932 933
            paddle.disable_static(paddle.CPUPlace())
            inputs_np = np.array([1, 2, 1]).astype(np.float)
            inputs = paddle.to_variable(inputs_np)
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
            paddle.enable_static()
Q
Qi Li 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
    """
    if in_dygraph_mode():
        return core.ops.histogram(input, "bins", bins, "min", min, "max", max)

    helper = LayerHelper('histogram', **locals())
    check_variable_and_dtype(
        input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram')
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
    helper.append_op(
        type='histogram',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'bins': bins,
               'min': min,
               'max': max})
    return out