Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
52b45007
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
52b45007
编写于
9月 26, 2021
作者:
Z
zhangkaihuo
提交者:
GitHub
9月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update multi_dot exposure rules (#36018)
上级
c330c3d9
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
80 addition
and
78 deletion
+80
-78
python/paddle/__init__.py
python/paddle/__init__.py
+0
-1
python/paddle/fluid/tests/unittests/test_multi_dot_op.py
python/paddle/fluid/tests/unittests/test_multi_dot_op.py
+10
-8
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+1
-0
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+69
-69
未找到文件。
python/paddle/__init__.py
浏览文件 @
52b45007
...
...
@@ -103,7 +103,6 @@ from .tensor.linalg import histogram # noqa: F401
from
.tensor.linalg
import
mv
# noqa: F401
from
.tensor.linalg
import
det
# noqa: F401
from
.tensor.linalg
import
slogdet
# noqa: F401
from
.tensor.linalg
import
multi_dot
# noqa: F401
from
.tensor.linalg
import
matrix_power
# noqa: F401
from
.tensor.linalg
import
svd
# noqa: F401
from
.tensor.linalg
import
solve
# noqa: F401
...
...
python/paddle/fluid/tests/unittests/test_multi_dot_op.py
浏览文件 @
52b45007
...
...
@@ -198,32 +198,34 @@ class TestMultiDotOpError(unittest.TestCase):
paddle
.
static
.
Program
()):
# The inputs type of multi_dot must be list matrix.
input1
=
12
self
.
assertRaises
(
TypeError
,
paddle
.
multi_dot
,
[
input1
,
input1
])
self
.
assertRaises
(
TypeError
,
paddle
.
linalg
.
multi_dot
,
[
input1
,
input1
])
# The inputs dtype of multi_dot must be float64, float64 or float16.
input2
=
paddle
.
static
.
data
(
name
=
'input2'
,
shape
=
[
10
,
10
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
paddle
.
multi_dot
,
[
input2
,
input2
])
self
.
assertRaises
(
TypeError
,
paddle
.
linalg
.
multi_dot
,
[
input2
,
input2
])
# the number of tensor must be larger than 1
x0
=
paddle
.
static
.
data
(
name
=
'x0'
,
shape
=
[
3
,
2
],
dtype
=
"float64"
)
self
.
assertRaises
(
ValueError
,
paddle
.
multi_dot
,
[
x0
])
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
multi_dot
,
[
x0
])
#the first tensor must be 1D or 2D
x1
=
paddle
.
static
.
data
(
name
=
'x1'
,
shape
=
[
3
,
2
,
3
],
dtype
=
"float64"
)
x2
=
paddle
.
static
.
data
(
name
=
'x2'
,
shape
=
[
3
,
2
],
dtype
=
"float64"
)
self
.
assertRaises
(
ValueError
,
paddle
.
multi_dot
,
[
x1
,
x2
])
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
multi_dot
,
[
x1
,
x2
])
#the last tensor must be 1D or 2D
x3
=
paddle
.
static
.
data
(
name
=
'x3'
,
shape
=
[
3
,
2
],
dtype
=
"float64"
)
x4
=
paddle
.
static
.
data
(
name
=
'x4'
,
shape
=
[
3
,
2
,
2
],
dtype
=
"float64"
)
self
.
assertRaises
(
ValueError
,
paddle
.
multi_dot
,
[
x3
,
x4
])
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
multi_dot
,
[
x3
,
x4
])
#the tensor must be 2D, except first and last tensor
x5
=
paddle
.
static
.
data
(
name
=
'x5'
,
shape
=
[
3
,
2
],
dtype
=
"float64"
)
x6
=
paddle
.
static
.
data
(
name
=
'x6'
,
shape
=
[
2
],
dtype
=
"float64"
)
x7
=
paddle
.
static
.
data
(
name
=
'x7'
,
shape
=
[
2
,
2
],
dtype
=
"float64"
)
self
.
assertRaises
(
ValueError
,
paddle
.
multi_dot
,
[
x5
,
x6
,
x7
])
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
multi_dot
,
[
x5
,
x6
,
x7
])
class
APITestMultiDot
(
unittest
.
TestCase
):
...
...
@@ -232,7 +234,7 @@ class APITestMultiDot(unittest.TestCase):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x0
=
paddle
.
static
.
data
(
name
=
'x0'
,
shape
=
[
3
,
2
],
dtype
=
"float64"
)
x1
=
paddle
.
static
.
data
(
name
=
'x1'
,
shape
=
[
2
,
3
],
dtype
=
'float64'
)
result
=
paddle
.
multi_dot
([
x0
,
x1
])
result
=
paddle
.
linalg
.
multi_dot
([
x0
,
x1
])
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
data1
=
np
.
random
.
rand
(
3
,
2
).
astype
(
"float64"
)
data2
=
np
.
random
.
rand
(
2
,
3
).
astype
(
"float64"
)
...
...
@@ -254,7 +256,7 @@ class APITestMultiDot(unittest.TestCase):
input_array2
=
np
.
random
.
rand
(
4
,
3
).
astype
(
"float64"
)
data1
=
paddle
.
to_tensor
(
input_array1
)
data2
=
paddle
.
to_tensor
(
input_array2
)
out
=
paddle
.
multi_dot
([
data1
,
data2
])
out
=
paddle
.
linalg
.
multi_dot
([
data1
,
data2
])
expected_result
=
np
.
linalg
.
multi_dot
([
input_array1
,
input_array2
])
self
.
assertTrue
(
np
.
allclose
(
expected_result
,
out
.
numpy
()))
...
...
python/paddle/tensor/__init__.py
浏览文件 @
52b45007
...
...
@@ -387,6 +387,7 @@ tensor_method_func = [ #noqa
'bitwise_not'
,
'broadcast_tensors'
,
'uniform_'
,
'multi_dot'
,
'solve'
,
]
...
...
python/paddle/tensor/linalg.py
浏览文件 @
52b45007
...
...
@@ -551,8 +551,8 @@ def cond(x, p=None, name=None):
Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.
Args:
x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
And the input data type could be ``float32`` or ``float64``.
p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
`inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
...
...
@@ -607,7 +607,7 @@ def cond(x, p=None, name=None):
# out_minus_inf.numpy() [1.]
a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
# a.numpy()
# a.numpy()
# [[[ 0.14063153 -0.996288 0.7996131 -0.02571543]
# [-0.16303636 1.5534962 -0.49919784 -0.04402903]
# [-1.1341571 -0.6022629 0.5445269 0.29154757]
...
...
@@ -975,8 +975,8 @@ def t(input, name=None):
return
out
check_variable_and_dtype
(
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'transpose'
)
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'transpose'
)
helper
=
LayerHelper
(
't'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
input
.
dtype
)
...
...
@@ -1108,17 +1108,17 @@ def matrix_rank(x, tol=None, hermitian=False, name=None):
r
"""
Computes the rank of a matrix.
The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
Args:
x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
the lower triangular of the matrix to compute.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
...
...
@@ -1225,7 +1225,7 @@ def bmm(x, y, name=None):
#output value:
#[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]]
out_np = out.numpy()
"""
x_shape
=
x
.
shape
y_shape
=
y
.
shape
...
...
@@ -1360,7 +1360,7 @@ def det(x):
Returns:
y (Tensor):the determinant value of a square matrix or batches of square matrices.
Example
:
Example
s:
.. code-block:: python
import paddle
...
...
@@ -1370,10 +1370,10 @@ def det(x):
A = paddle.det(x)
print(A)
# [ 0.02547996, 2.52317095, -6.15900707])
"""
if
in_dygraph_mode
():
return
core
.
ops
.
determinant
(
x
)
...
...
@@ -1403,7 +1403,7 @@ def slogdet(x):
"""
Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
The determinant can be computed with ``sign * exp(logabsdet)
Supports input of float, double
Note that for matrices that have zero determinant, this returns ``(0, -inf)``
...
...
@@ -1415,7 +1415,7 @@ def slogdet(x):
y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
of the absolute value of determinant, respectively.
Example:
Example
s
:
.. code-block:: python
import paddle
...
...
@@ -1425,7 +1425,7 @@ def slogdet(x):
A = paddle.slogdet(x)
print(A)
# [[ 1. , 1. , -1. ],
# [-0.98610914, -0.43010661, -0.10872950]])
...
...
@@ -1461,19 +1461,19 @@ def svd(x, full_matrices=False, name=None):
Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:
.. math::
X = U * diag(S) * VT
X = U * diag(S) * VT
Args:
x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
where `...` is zero or more batch dimensions. N and M can be arbitraty
positive number. Note that if x is sigular matrices, the grad is numerical
instable. The data type of x should be float32 or float64.
full_matrices (bool): A flag to control the behavor of svd.
If full_matrices = True, svd op will compute full U and V matrics,
positive number. Note that if x is sigular matrices, the grad is numerical
instable. The data type of x should be float32 or float64.
full_matrices (bool): A flag to control the behavor of svd.
If full_matrices = True, svd op will compute full U and V matrics,
which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
If full_matrices = False, svd op will use a economic method to store U and V.
If full_matrices = False, svd op will use a economic method to store U and V.
which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
...
...
@@ -1497,9 +1497,9 @@ def svd(x, full_matrices=False, name=None):
print (vh)
#VT= [[ 0.51411221, 0.85772294],
# [ 0.85772294, -0.51411221]]
# one can verify : U * S * VT == X
# U * UH == I
# U * UH == I
# V * VH == I
"""
...
...
@@ -1526,7 +1526,7 @@ def svd(x, full_matrices=False, name=None):
def
matrix_power
(
x
,
n
,
name
=
None
):
r
"""
Computes the n-th power of a square matrix or a batch of square matrices.
Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
an exponent, the equation should be:
...
...
@@ -1596,27 +1596,27 @@ def matrix_power(x, n, name=None):
def
eigvals
(
x
,
name
=
None
):
"""
Compute the eigenvalues of one or more general matrices.
Warning:
The gradient kernel of this operator does not yet developed.
Warning:
The gradient kernel of this operator does not yet developed.
If you need back propagation through this operator, please replace it with paddle.linalg.eig.
Args:
x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
Its data type should be float32, float64, complex64, or complex128.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.
Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.
The eigenvalues are complex-valued even when `x` is real.
Examples:
.. code-block:: python
import paddle
paddle.set_device("cpu")
paddle.seed(1234)
...
...
@@ -1630,8 +1630,8 @@ def eigvals(x, name=None):
"""
check_variable_and_dtype
(
x
,
'dtype'
,
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'eigvals'
)
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'eigvals'
)
x_shape
=
list
(
x
.
shape
)
if
len
(
x_shape
)
<
2
:
...
...
@@ -1657,7 +1657,7 @@ def multi_dot(x, name=None):
"""
Multi_dot is an operator that calculates multiple matrix multiplications.
Supports inputs of float
, double and float16
dtypes. This function does not
Supports inputs of float
16(only GPU support), float32 and float64
dtypes. This function does not
support batched inputs.
The input tensor in [x] must be 2-D except for the first and last can be 1-D.
...
...
@@ -1699,7 +1699,7 @@ def multi_dot(x, name=None):
B_data = np.random.random([4, 5]).astype(np.float32)
A = paddle.to_tensor(A_data)
B = paddle.to_tensor(B_data)
out = paddle.multi_dot([A, B])
out = paddle.
linalg.
multi_dot([A, B])
print(out.numpy().shape)
# [3, 5]
...
...
@@ -1710,7 +1710,7 @@ def multi_dot(x, name=None):
A = paddle.to_tensor(A_data)
B = paddle.to_tensor(B_data)
C = paddle.to_tensor(C_data)
out = paddle.multi_dot([A, B, C])
out = paddle.
linalg.
multi_dot([A, B, C])
print(out.numpy().shape)
# [10, 7]
...
...
@@ -1735,7 +1735,7 @@ def multi_dot(x, name=None):
def
eigh
(
x
,
UPLO
=
'L'
,
name
=
None
):
"""
Compute the eigenvalues and eigenvectors of a
Compute the eigenvalues and eigenvectors of a
complex Hermitian (conjugate symmetric) or a real symmetric matrix.
Args:
...
...
@@ -1804,7 +1804,7 @@ def eigh(x, UPLO='L', name=None):
def
pinv
(
x
,
rcond
=
1e-15
,
hermitian
=
False
,
name
=
None
):
r
"""
Calculate pseudo inverse via SVD(singular value decomposition)
Calculate pseudo inverse via SVD(singular value decomposition)
of one matrix or batches of regular matrix.
.. math::
...
...
@@ -1815,30 +1815,30 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
else:
x = u * s * ut (eigh)
out = u * 1/s * u.conj().transpose(-2,-1)
If x is hermitian or symmetric matrix, svd will be replaced with eigh.
Args:
x(Tensor): The input tensor. Its shape should be (*, m, n)
where * is zero or more batch dimensions. m and n can be
arbitraty positive number. The data type of x should be
x(Tensor): The input tensor. Its shape should be (*, m, n)
where * is zero or more batch dimensions. m and n can be
arbitraty positive number. The data type of x should be
float32 or float64 or complex64 or complex128. When data
type is complex64 or cpmplex128, hermitian should be set
True.
rcond(Tensor, optional): the tolerance value to determine
when is a singular value zero. Defalut:1e-15.
hermitian(bool, optional): indicates whether x is Hermitian
rcond(Tensor, optional): the tolerance value to determine
when is a singular value zero. Defalut:1e-15.
hermitian(bool, optional): indicates whether x is Hermitian
if complex or symmetric if real. Default: False.
name(str|None): A name for this layer(optional). If set None,
name(str|None): A name for this layer(optional). If set None,
the layer will be named automatically.
Returns:
Tensor: The tensor with same data type with x. it represents
Tensor: The tensor with same data type with x. it represents
pseudo inverse of x. Its shape should be (*, n, m).
Examples:
.. code-block:: python
...
...
@@ -1998,8 +1998,8 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
helper
=
LayerHelper
(
'pinv'
,
**
locals
())
dtype
=
x
.
dtype
check_variable_and_dtype
(
x
,
'dtype'
,
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'pinv'
)
x
,
'dtype'
,
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'pinv'
)
if
dtype
==
paddle
.
complex128
:
s_type
=
'float64'
...
...
@@ -2079,40 +2079,40 @@ def solve(x, y, name=None):
Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
a vector/matrix or a batch of vectors/matrices, the equation should be:
.. math::
Out = X^-1 * Y
Specifically,
- This system of linear equations has one solution if and only if input 'X' is invertible.
Args:
x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
more batch dimensions. Its data type should be float32 or float64.
y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
more batch dimensions. Its data type should be float32 or float64.
name(str, optional): Name for the operation (optional, default is None).
name(str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
Its data type should be the same as that of `x`.
Examples:
.. code-block:: python
# a square system of linear equations:
# 2*X0 + X1 = 9
# X0 + 2*X1 = 8
import paddle
import numpy as np
np_x = np.array([[3, 1],[1, 2]])
np_y = np.array([9, 8])
x = paddle.to_tensor(np_x, dtype="float64")
y = paddle.to_tensor(np_y, dtype="float64")
out = paddle.linalg.solve(x, y)
print(out)
# [2., 3.])
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录