operator.h 18.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32 33 34 35 36
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
37
#include "paddle/fluid/framework/unused_var_check.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
41

Q
Qiao Longfei 已提交
42 43
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
44 45 46
namespace paddle {
namespace framework {

47
/// If a variable is a empty variable, that name will be used.
48
constexpr char kEmptyVarName[] = "@EMPTY@";
49 50 51

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
52
constexpr char kTempVarName[] = "@TEMP@";
53 54

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
55 56
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
57
constexpr char kGradVarSuffix[] = "@GRAD";
58

M
minqiyang 已提交
59 60
constexpr size_t kGradVarSuffixSize = 5U;

61
/// Variables with this suffix are supposed to be filled up with zeros.
62
constexpr char kZeroVarSuffix[] = "@ZERO";
63

C
chengduo 已提交
64 65 66
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

67 68 69
/// Variables with this suffix are the loaded from pre-train model.
constexpr char kLoadedVarSuffix[] = "@LOADED";

L
luotao1 已提交
70 71 72 73 74 75 76 77
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
78 79 80 81 82 83 84 85 86
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
87
// define some kernel priority
88
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
89 90
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

91
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
92 93 94 95 96
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
97 98
}

M
minqiyang 已提交
99
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
100
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
101 102 103 104 105
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
106 107
}

C
chengduo 已提交
108 109
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
110

Q
Qiao Longfei 已提交
111
class OperatorBase;
112
class ExecutionContext;
113

X
Xin Pan 已提交
114 115
class RuntimeContext {
 public:
X
Xin Pan 已提交
116 117
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
118

X
Xin Pan 已提交
119 120 121 122
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
123 124 125 126
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
127
/**
X
Xin Pan 已提交
128
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
129 130 131 132 133 134
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
135 136
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
137

Q
Qiao Longfei 已提交
138 139
  virtual ~OperatorBase() {}

140
  /// Executor will call this interface function to Run an op.
141 142
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
143

T
typhoonzero 已提交
144 145 146
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

147 148 149
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
150

151 152
  virtual bool SupportGPU() const { return false; }

153 154
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
155
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
156 157
  template <typename T>
  inline const T& Attr(const std::string& name) const {
158 159 160
    PADDLE_ENFORCE_NE(
        attrs_.find(name), attrs_.end(),
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
161
    return BOOST_GET_CONST(T, attrs_.at(name));
162 163
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
164

Y
Yu Yang 已提交
165 166
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
167

S
sneaxiy 已提交
168
  const OpInfo& Info() const {
169 170 171
    PADDLE_ENFORCE_NOT_NULL(
        info_, platform::errors::NotFound(
                   "OpInfo of operator (%s) is not found.", type_));
S
sneaxiy 已提交
172 173 174
    return *info_;
  }

175
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
176
  //! Get a input with argument's name described in `op_proto`
177
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
178
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
179
  const std::vector<std::string>& Inputs(const std::string& name) const;
180
  //! Get all inputs variable names
Q
qijun 已提交
181 182
  std::vector<std::string> InputVars() const;

183
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
184
  //! Get a output with argument's name described in `op_proto`
185
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
186 187
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
188
  const std::vector<std::string>& Outputs(const std::string& name) const;
189
  //! Get all outputs variable names
Y
Yu Yang 已提交
190
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
191

192
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
193

B
baojun-nervana 已提交
194
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
195 196
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
197

Z
Zhang Ting 已提交
198 199 200 201 202
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
203
 protected:
Q
Qiao Longfei 已提交
204
  std::string type_;
D
dongzhihong 已提交
205
  // NOTE: in case of OpGrad, inputs_ contains:
206
  // I (Inputs)
D
dongzhihong 已提交
207 208
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
209
  VariableNameMap inputs_;
Y
Yu Yang 已提交
210

D
dongzhihong 已提交
211 212
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
213
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
214
  AttributeMap attrs_;
S
sneaxiy 已提交
215 216 217 218

  // OpInfo
  const OpInfo* info_;

219 220
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
221 222 223 224

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
225 226
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
227 228
};

229
class ExecutionContext {
Y
Yan Chunwei 已提交
230
 public:
231
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
232
                   const platform::DeviceContext& device_context,
233 234
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
235
  virtual ~ExecutionContext() {}
236

H
hong 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
257 258 259

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
260
  template <typename T>
Y
Yu Yang 已提交
261
  inline const T& Attr(const std::string& name) const {
262
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
263 264
  }

H
hong 已提交
265 266 267
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
268

H
hong 已提交
269
  virtual bool HasInput(const std::string& name) const;
270

H
hong 已提交
271
  virtual bool HasOutput(const std::string& name) const;
272

H
hong 已提交
273
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
274
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
275 276
  }

H
hong 已提交
277
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
278
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
279 280
  }

H
hong 已提交
281
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
282

H
hong 已提交
283
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
284

H
hong 已提交
285
  virtual const std::vector<Variable*> MultiInputVar(
286
      const std::string& name) const {
287 288
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
289 290 291 292
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
293
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
294 295
  }

H
hong 已提交
296
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
297 298 299 300 301 302 303
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
304 305 306 307 308 309 310 311 312 313 314
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

315 316
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
317
    auto* var = InputVar(name);
318
    return var == nullptr ? nullptr : &var->Get<T>();
319 320 321 322
  }

  template <typename T>
  T* Output(const std::string& name) const {
323
    auto var = OutputVar(name);
324
    return var == nullptr ? nullptr : var->GetMutable<T>();
325 326 327 328
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
329 330
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
331 332
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
333 334 335 336 337
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
338
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
339 340 341 342 343 344 345
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
346 347 348
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
349 350
      return {};
    }
H
hong 已提交
351

X
Xin Pan 已提交
352 353 354 355 356 357
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
358

X
Xin Pan 已提交
359 360 361
    return res;
  }

362
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
363

Q
QI JUN 已提交
364 365 366 367 368
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

369
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
370
    return device_context_;
Q
qijun 已提交
371
  }
Q
qijun 已提交
372

Q
QI JUN 已提交
373 374
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
375 376 377
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
Q
QI JUN 已提交
378 379 380 381 382
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
383 384 385
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
386
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
387 388 389 390 391
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

392 393 394 395 396 397
    PADDLE_ENFORCE_GE(
        allocation_ptr->size(), framework::product(dim) * sizeof(T),
        platform::errors::PreconditionNotMet(
            "The data memory size(%d) is less than the tensor needed memory "
            "size(%d).",
            allocation_ptr->size(), framework::product(dim) * sizeof(T)));
X
Xin Pan 已提交
398 399 400 401 402 403 404 405

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
406 407 408
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
H
hong 已提交
409

410
 private:
411 412
  const OperatorBase& op_;
  const Scope& scope_;
413
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
414
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
415 416
};

417 418 419 420 421 422 423 424 425 426 427 428 429 430
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
431
class OpKernelBase {
Q
qijun 已提交
432
 public:
Q
qijun 已提交
433
  /**
434
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
435 436
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
437
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
438 439
   */

440
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
441

Y
Yu Yang 已提交
442 443 444 445 446 447 448
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
449 450
};

Y
Yu Yang 已提交
451 452
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
453
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
454
  using OpKernelMap =
Y
yuyang18 已提交
455
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
456

Y
Yu Yang 已提交
457 458
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
459 460
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
461 462 463 464
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
465
  }
Y
Yan Chunwei 已提交
466

467 468 469 470 471
  bool IsMKLDNNType() const {
    return ((this->kernel_type_) && (this->kernel_type_->data_layout_ ==
                                     framework::DataLayout::kMKLDNN));
  }

472
  bool SupportGPU() const override {
Y
Yu Yang 已提交
473 474 475 476 477
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
478 479
  }

480
  virtual void InferShape(InferShapeContext* ctx) const = 0;
Y
Yu Yang 已提交
481

X
Xin Pan 已提交
482 483
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
484

485 486 487
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

488
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
489

490 491
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
492 493 494
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
495

496 497
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
498 499 500
    return kernel_type_->place_;
  }

Y
Yu Yang 已提交
501
 private:
502 503
  void ParseInputDataType(const ExecutionContext& ctx, const std::string& name,
                          proto::VarType::Type* type) const;
504
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
505
  // same.
506
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
507
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
508 509
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
510 511

  /**
T
tianshuo78520a 已提交
512 513
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
514 515 516 517
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
518 519 520 521
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
522 523 524 525

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
526

L
Liu Yiqun 已提交
527 528 529
  void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
                    const platform::Place& place) const;

530
 protected:
L
Liu Yiqun 已提交
531 532
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
533 534
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
535
  mutable bool need_prepare_data_ = true;
536 537
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
538
  mutable std::mutex cache_update_mutex_;
539
  mutable bool enable_cache_transfer_scope_ = false;
Q
Qiao Longfei 已提交
540 541
};

Y
Yu Yang 已提交
542 543
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
544 545
}  // namespace framework
}  // namespace paddle