operator.h 17.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36

Q
Qiao Longfei 已提交
37 38
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
39 40 41
namespace paddle {
namespace framework {

42
/// If a variable is a empty variable, that name will be used.
43
constexpr char kEmptyVarName[] = "@EMPTY@";
44 45 46

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
47
constexpr char kTempVarName[] = "@TEMP@";
48 49 50 51

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
52
constexpr char kGradVarSuffix[] = "@GRAD";
53

M
minqiyang 已提交
54 55
constexpr size_t kGradVarSuffixSize = 5U;

56
/// Variables with this suffix are supposed to be filled up with zeros.
57
constexpr char kZeroVarSuffix[] = "@ZERO";
58

C
chengduo 已提交
59 60 61
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
62
// define some kernel priority
63
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
64 65
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

66
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
67 68 69 70 71
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
72 73
}

M
minqiyang 已提交
74
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
75
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
76 77 78 79 80
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
81 82
}

Q
qiaolongfei 已提交
83
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
84 85
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
86

Q
Qiao Longfei 已提交
87
class OperatorBase;
88
class ExecutionContext;
89

X
Xin Pan 已提交
90 91
class RuntimeContext {
 public:
X
Xin Pan 已提交
92 93
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
94

X
Xin Pan 已提交
95 96 97 98
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
99 100 101 102
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
103
/**
X
Xin Pan 已提交
104
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
105 106 107 108 109 110
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
111 112
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
113

Q
Qiao Longfei 已提交
114 115
  virtual ~OperatorBase() {}

116
  /// Executor will call this interface function to Run an op.
117 118
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
119

T
typhoonzero 已提交
120 121 122
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

123 124 125
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
126

127 128
  virtual bool SupportGPU() const { return false; }

129 130
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
131
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
132 133
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
134 135
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
136 137 138
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
139

Y
Yu Yang 已提交
140 141
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
142

143
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
144
  //! Get a input with argument's name described in `op_proto`
145
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
146
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
147
  const std::vector<std::string>& Inputs(const std::string& name) const;
148
  //! Get all inputs variable names
Q
qijun 已提交
149 150
  std::vector<std::string> InputVars() const;

151
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
152
  //! Get a output with argument's name described in `op_proto`
153
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
154 155
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
156
  const std::vector<std::string>& Outputs(const std::string& name) const;
157
  //! Get all outputs variable names
Y
Yu Yang 已提交
158
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
159

160
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
161
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
162 163
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
164

Q
qiaolongfei 已提交
165
 protected:
Q
Qiao Longfei 已提交
166
  std::string type_;
D
dongzhihong 已提交
167
  // NOTE: in case of OpGrad, inputs_ contains:
168
  // I (Inputs)
D
dongzhihong 已提交
169 170
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
171
  VariableNameMap inputs_;
Y
Yu Yang 已提交
172

D
dongzhihong 已提交
173 174
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
175
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
176
  AttributeMap attrs_;
177 178
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
179 180 181 182

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
183 184
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
185 186
};

187
class ExecutionContext {
Y
Yan Chunwei 已提交
188
 public:
189
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
190 191 192
                   const platform::DeviceContext& device_context,
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
193

Q
qiaolongfei 已提交
194 195 196 197
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
198
  template <typename T>
Y
Yu Yang 已提交
199 200
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
201 202
  }

203
  bool HasInput(const std::string& name) const;
204

205
  bool HasOutput(const std::string& name) const;
206

Y
Yu Yang 已提交
207
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
208
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
209 210
  }

Y
Yu Yang 已提交
211
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
212
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
213 214
  }

X
Xin Pan 已提交
215
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
216

X
Xin Pan 已提交
217
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
218

219 220
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
221 222 223 224
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
Y
Yan Chunwei 已提交
225
    std::vector<const Variable*> res;
X
Xin Pan 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    res.reserve(it->second.size());
    std::transform(it->second.begin(), it->second.end(),
                   std::back_inserter(res),
                   [this](Variable* var) { return var; });
    return res;
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
246
    res.reserve(names.size());
247 248
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
249 250
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
251
                   });
Y
Yan Chunwei 已提交
252 253 254
    return res;
  }

X
Xin Pan 已提交
255
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
256
    auto names = op_.Outputs(name);
257
    std::vector<Variable*> res;
258
    res.reserve(names.size());
259 260
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
261 262
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
263
                   });
Y
Yan Chunwei 已提交
264 265 266
    return res;
  }

267 268
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
269
    auto* var = InputVar(name);
270
    return var == nullptr ? nullptr : &var->Get<T>();
271 272 273 274
  }

  template <typename T>
  T* Output(const std::string& name) const {
275
    auto var = OutputVar(name);
276
    return var == nullptr ? nullptr : var->GetMutable<T>();
277 278
  }

X
Xin Pan 已提交
279
  template <typename T>
X
clean  
Xin Pan 已提交
280 281
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
282 283 284 285
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
286 287
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
288 289 290
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
291
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
292

X
clean  
Xin Pan 已提交
293
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
294

295 296
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
329 330 331 332
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
333
                   [&](const std::string& sub_name) -> const T* {
334
                     auto var = scope_.FindVar(sub_name);
335
                     return var == nullptr ? nullptr : &var->Get<T>();
336 337 338 339 340
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
341
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
342
    auto names = op_.Outputs(name);
343
    std::vector<T*> res;
344 345
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
346
                   [&](const std::string& sub_name) -> T* {
347
                     auto var = scope_.FindVar(sub_name);
348
                     return var == nullptr ? nullptr : var->GetMutable<T>();
349 350 351 352
                   });
    return res;
  }

353
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
354

Q
QI JUN 已提交
355 356 357 358 359
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

360
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
361
    return device_context_;
Q
qijun 已提交
362
  }
Q
qijun 已提交
363

Q
QI JUN 已提交
364 365 366 367 368 369 370 371
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
372
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
373 374 375
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
376

D
dzhwinter 已提交
377
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
378 379 380 381
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

X
Xin Pan 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
    auto tmp_allocation_ptr = platform::DeviceTemporaryAllocator::Instance()
                                  .Get<DevContext>(dev_ctx)
                                  .Allocate(product(dim) * sizeof(T));
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

    PADDLE_ENFORCE(
        dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
        "The AllocationPtr must be TemporaryAllocation.");
396
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
397 398 399 400 401 402 403 404 405
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

406
 private:
407 408
  const OperatorBase& op_;
  const Scope& scope_;
409
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
410
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
411 412
};

413 414 415
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
416
template <>
X
clean  
Xin Pan 已提交
417
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
418 419
    const std::string& name) const;

420 421 422 423
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
424 425 426 427
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

428 429 430
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
431
template <>
X
clean  
Xin Pan 已提交
432
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
433

434 435 436 437
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
438
class OpKernelBase {
Q
qijun 已提交
439
 public:
Q
qijun 已提交
440
  /**
441
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
442 443
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
444
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
445 446
   */

447
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
448

Y
Yu Yang 已提交
449 450 451 452 453 454 455
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
456 457
};

Y
Yu Yang 已提交
458 459
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
460
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
461
  using OpKernelMap =
Y
yuyang18 已提交
462
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
463

Y
Yu Yang 已提交
464 465
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
466 467
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
468 469 470 471
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
472
  }
Y
Yan Chunwei 已提交
473

474
  bool SupportGPU() const override {
Y
Yu Yang 已提交
475 476 477 478 479
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
480 481
  }

482 483 484
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
485

X
Xin Pan 已提交
486 487
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
488

489
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
490 491

 protected:
492 493 494
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
495 496

 private:
497
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
498
  // same.
499
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
500
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
501 502 503 504 505 506 507

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
508 509 510 511
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
512 513 514 515

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
516 517
};

Y
Yu Yang 已提交
518 519
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
520 521
}  // namespace framework
}  // namespace paddle