operator.h 16.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51

M
minqiyang 已提交
52 53
constexpr size_t kGradVarSuffixSize = 5U;

54
/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

C
chengduo 已提交
57 58 59
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
60
// define some kernel priority
61
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
62 63
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

64
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
65 66 67 68 69
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
70 71
}

Q
qiaolongfei 已提交
72
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
73 74
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
75

Q
Qiao Longfei 已提交
76
class OperatorBase;
77
class ExecutionContext;
78

X
Xin Pan 已提交
79 80
class RuntimeContext {
 public:
X
Xin Pan 已提交
81 82
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
83

X
Xin Pan 已提交
84 85 86 87
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
88 89 90 91
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
92
/**
X
Xin Pan 已提交
93
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
94 95 96 97 98 99
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
100 101
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
102

Q
Qiao Longfei 已提交
103 104
  virtual ~OperatorBase() {}

105
  /// Executor will call this interface function to Run an op.
106 107
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
X
Xin Pan 已提交
108
  void Run(const RuntimeContext& ctx, const platform::Place& place);
Y
Yu Yang 已提交
109

T
typhoonzero 已提交
110 111 112
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

113 114 115
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
116

117 118
  virtual bool SupportGPU() const { return false; }

119 120
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
121
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
122 123
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
124 125
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
126 127 128
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
129

Y
Yu Yang 已提交
130 131
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
132

133
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
134
  //! Get a input with argument's name described in `op_proto`
135
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
136
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
137
  const std::vector<std::string>& Inputs(const std::string& name) const;
138
  //! Get all inputs variable names
Q
qijun 已提交
139 140
  std::vector<std::string> InputVars() const;

141
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
142
  //! Get a output with argument's name described in `op_proto`
143
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
144 145
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
146
  const std::vector<std::string>& Outputs(const std::string& name) const;
147
  //! Get all outputs variable names
Y
Yu Yang 已提交
148
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
149

150
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
151
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
152 153
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
154

Q
qiaolongfei 已提交
155
 protected:
Q
Qiao Longfei 已提交
156
  std::string type_;
D
dongzhihong 已提交
157
  // NOTE: in case of OpGrad, inputs_ contains:
158
  // I (Inputs)
D
dongzhihong 已提交
159 160
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
161
  VariableNameMap inputs_;
Y
Yu Yang 已提交
162

D
dongzhihong 已提交
163 164
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
165
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
166
  AttributeMap attrs_;
167 168
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
169 170 171 172

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
173 174
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
X
Xin Pan 已提交
175

X
clean  
Xin Pan 已提交
176 177 178 179
  virtual void RunImplPrepared(const RuntimeContext& ctx,
                               const platform::Place& place) const {
    PADDLE_THROW("%s doesn't support RunPreparedImpl", Type());
  }
Y
Yan Chunwei 已提交
180 181
};

182
class ExecutionContext {
Y
Yan Chunwei 已提交
183
 public:
184
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
185 186 187
                   const platform::DeviceContext& device_context,
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
188

Q
qiaolongfei 已提交
189 190 191 192
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
193
  template <typename T>
Y
Yu Yang 已提交
194 195
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
196 197
  }

198
  bool HasInput(const std::string& name) const;
199

200
  bool HasOutput(const std::string& name) const;
201

Y
Yu Yang 已提交
202
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
203
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
204 205
  }

Y
Yu Yang 已提交
206
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
207
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
208 209
  }

X
Xin Pan 已提交
210
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
211

X
Xin Pan 已提交
212
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
213

214 215
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
216 217 218 219
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
Y
Yan Chunwei 已提交
220
    std::vector<const Variable*> res;
X
Xin Pan 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    res.reserve(it->second.size());
    std::transform(it->second.begin(), it->second.end(),
                   std::back_inserter(res),
                   [this](Variable* var) { return var; });
    return res;
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
241
    res.reserve(names.size());
242 243
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
244 245
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
246
                   });
Y
Yan Chunwei 已提交
247 248 249
    return res;
  }

X
Xin Pan 已提交
250
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
251
    auto names = op_.Outputs(name);
252
    std::vector<Variable*> res;
253
    res.reserve(names.size());
254 255
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
256 257
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
258
                   });
Y
Yan Chunwei 已提交
259 260 261
    return res;
  }

262 263
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
264
    auto* var = InputVar(name);
265
    return var == nullptr ? nullptr : &var->Get<T>();
266 267 268 269
  }

  template <typename T>
  T* Output(const std::string& name) const {
270
    auto var = OutputVar(name);
271
    return var == nullptr ? nullptr : var->GetMutable<T>();
272 273
  }

X
Xin Pan 已提交
274
  template <typename T>
X
clean  
Xin Pan 已提交
275 276
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
277 278 279 280
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
281 282
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
283 284 285
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
286
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
287

X
clean  
Xin Pan 已提交
288
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
289

290 291
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
324 325 326 327
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
328
                   [&](const std::string& sub_name) -> const T* {
329
                     auto var = scope_.FindVar(sub_name);
330
                     return var == nullptr ? nullptr : &var->Get<T>();
331 332 333 334 335
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
336
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
337
    auto names = op_.Outputs(name);
338
    std::vector<T*> res;
339 340
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
341
                   [&](const std::string& sub_name) -> T* {
342
                     auto var = scope_.FindVar(sub_name);
343
                     return var == nullptr ? nullptr : var->GetMutable<T>();
344 345 346 347
                   });
    return res;
  }

348
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
349

Q
QI JUN 已提交
350 351 352 353 354
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

355
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
356
    return device_context_;
Q
qijun 已提交
357
  }
Q
qijun 已提交
358

Q
QI JUN 已提交
359 360 361 362 363 364 365 366
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
367
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
368 369 370
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
371

D
dzhwinter 已提交
372
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
373 374 375 376
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

377
 private:
378 379
  const OperatorBase& op_;
  const Scope& scope_;
380
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
381
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
382 383
};

384 385 386
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
387
template <>
X
clean  
Xin Pan 已提交
388
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
389 390
    const std::string& name) const;

391 392 393 394
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
395 396 397 398
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

399 400 401
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
402
template <>
X
clean  
Xin Pan 已提交
403
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
404

405 406 407 408
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
409
class OpKernelBase {
Q
qijun 已提交
410
 public:
Q
qijun 已提交
411
  /**
412
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
413 414
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
415
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
416 417
   */

418
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
419

Y
Yu Yang 已提交
420 421 422 423 424 425 426
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
427 428
};

Y
Yu Yang 已提交
429 430
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
431
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
432
  using OpKernelMap =
Y
yuyang18 已提交
433
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
434

Y
Yu Yang 已提交
435 436
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
437 438
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
439 440 441 442
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
443
  }
Y
Yan Chunwei 已提交
444

445
  bool SupportGPU() const override {
Y
Yu Yang 已提交
446 447 448 449 450
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
451 452
  }

453 454 455
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
456

X
Xin Pan 已提交
457 458
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
459

Q
qiaolongfei 已提交
460
 protected:
461 462 463 464
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
465 466

 private:
467
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
468
  // same.
469
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
470
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
X
clean  
Xin Pan 已提交
471 472
  void RunImplPrepared(const RuntimeContext& ctx,
                       const platform::Place& place) const final;
Y
yuyang18 已提交
473 474 475 476 477 478 479

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
480 481 482 483
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
484 485 486 487

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
488 489
};

Y
Yu Yang 已提交
490 491
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
492 493
}  // namespace framework
}  // namespace paddle