helper.cc 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include "paddle/fluid/operators/jit/helper.h"
T
tensor-tang 已提交
16
#include <algorithm>  // tolower
17 18
#include <numeric>
#include <string>
19
#include "paddle/fluid/platform/enforce.h"
20 21 22 23 24

namespace paddle {
namespace operators {
namespace jit {

25 26 27 28
#define ONE_CASE(key) \
  case key:           \
    return #key

29 30
const char* to_string(KernelType kt) {
  switch (kt) {
31
    ONE_CASE(kNone);
T
tensor-tang 已提交
32 33 34 35 36 37 38
    ONE_CASE(kVMul);
    ONE_CASE(kVAdd);
    ONE_CASE(kVAddRelu);
    ONE_CASE(kVSub);
    ONE_CASE(kVScal);
    ONE_CASE(kVAddBias);
    ONE_CASE(kVRelu);
39
    ONE_CASE(kVBroadcast);
40
    ONE_CASE(kVCopy);
T
tensor-tang 已提交
41 42
    ONE_CASE(kVIdentity);
    ONE_CASE(kVExp);
T
tensor-tang 已提交
43
    ONE_CASE(kVSquare);
T
tensor-tang 已提交
44 45 46 47 48 49 50 51 52 53
    ONE_CASE(kVSigmoid);
    ONE_CASE(kVTanh);
    ONE_CASE(kLSTMCtHt);
    ONE_CASE(kLSTMC1H1);
    ONE_CASE(kGRUH1);
    ONE_CASE(kGRUHtPart1);
    ONE_CASE(kGRUHtPart2);
    ONE_CASE(kCRFDecoding);
    ONE_CASE(kLayerNorm);
    ONE_CASE(kNCHW16CMulNC);
54
    ONE_CASE(kSeqPool);
T
tensor-tang 已提交
55
    ONE_CASE(kMatMul);
56 57 58
    ONE_CASE(kHMax);
    ONE_CASE(kHSum);
    ONE_CASE(kSoftmax);
59
    ONE_CASE(kEmbSeqPool);
60
    ONE_CASE(kSgd);
61
    default:
T
tensor-tang 已提交
62
      PADDLE_THROW("Not support type: %d, or forget to add it.", kt);
63 64 65 66
      return "NOT JITKernel";
  }
  return nullptr;
}
67 68 69 70 71 72 73 74 75 76 77 78 79

const char* to_string(SeqPoolType tp) {
  switch (tp) {
    ONE_CASE(kNonePoolType);
    ONE_CASE(kSum);
    ONE_CASE(kAvg);
    ONE_CASE(kSqrt);
    default:
      PADDLE_THROW("Not support type: %d, or forget to add it.", tp);
      return "NOT PoolType";
  }
  return nullptr;
}
80
#undef ONE_CASE
81

T
tensor-tang 已提交
82 83 84 85
KernelType to_kerneltype(const std::string& act) {
  std::string lower = act;
  std::transform(lower.begin(), lower.end(), lower.begin(), ::tolower);
  if (lower == "relu" || lower == "vrelu") {
T
tensor-tang 已提交
86
    return kVRelu;
T
tensor-tang 已提交
87
  } else if (lower == "identity" || lower == "videntity" || lower == "") {
T
tensor-tang 已提交
88
    return kVIdentity;
T
tensor-tang 已提交
89
  } else if (lower == "exp" || lower == "vexp") {
T
tensor-tang 已提交
90
    return kVExp;
T
tensor-tang 已提交
91
  } else if (lower == "sigmoid" || lower == "vsigmoid") {
T
tensor-tang 已提交
92
    return kVSigmoid;
T
tensor-tang 已提交
93
  } else if (lower == "tanh" || lower == "vtanh") {
T
tensor-tang 已提交
94
    return kVTanh;
T
tensor-tang 已提交
95
  }
96
  PADDLE_THROW("Not support type: %s, or forget to add this case", act);
T
tensor-tang 已提交
97
  return kNone;
T
tensor-tang 已提交
98 99
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
template <>
void pack_weights<float>(const float* src, float* dst, int n, int k) {
  int block, rest;
  const auto groups = packed_groups(n, k, &block, &rest);
  std::for_each(groups.begin(), groups.end(), [&](int i) {
    PADDLE_ENFORCE_GT(i, 0, "each element of groups should be larger than 0.");
  });
  int sum = std::accumulate(groups.begin(), groups.end(), 0);
  std::memset(dst, 0, k * sum * block * sizeof(float));
  PADDLE_ENFORCE_GE(sum * block, n,
                    "The packed n should be equal to or larger than n");

  const int block_len = sizeof(float) * block;
  int n_offset = 0;

  for (size_t g = 0; g < groups.size(); ++g) {
    const float* from = src + n_offset;
    for (int j = 0; j < k; ++j) {
      size_t copy_sz = groups[g] * block_len;
      if (g == groups.size() - 1 && rest != 0) {
        copy_sz = (groups[g] - 1) * block_len + rest * sizeof(float);
      }
      std::memcpy(dst, from + j * n, copy_sz);
      dst += groups[g] * block;
    }
    n_offset += groups[g] * block;
  }
}

template <typename T>
typename std::enable_if<!std::is_same<T, float>::value>::type pack_weights(
    const T* src, T* dst, int n, int k) {
  PADDLE_THROW("Only support pack with float type.");
}

135 136 137
}  // namespace jit
}  // namespace operators
}  // namespace paddle