helper.cc 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include "paddle/fluid/operators/jit/helper.h"
T
tensor-tang 已提交
16
#include <algorithm>  // tolower
17 18
#include <numeric>
#include <string>
19
#include "paddle/fluid/platform/enforce.h"
20 21 22 23 24

namespace paddle {
namespace operators {
namespace jit {

25 26 27 28
#define ONE_CASE(key) \
  case key:           \
    return #key

29 30
const char* to_string(KernelType kt) {
  switch (kt) {
31
    ONE_CASE(kNone);
T
tensor-tang 已提交
32 33 34 35 36 37 38
    ONE_CASE(kVMul);
    ONE_CASE(kVAdd);
    ONE_CASE(kVAddRelu);
    ONE_CASE(kVSub);
    ONE_CASE(kVScal);
    ONE_CASE(kVAddBias);
    ONE_CASE(kVRelu);
39
    ONE_CASE(kVCopy);
T
tensor-tang 已提交
40 41
    ONE_CASE(kVIdentity);
    ONE_CASE(kVExp);
T
tensor-tang 已提交
42
    ONE_CASE(kVSquare);
T
tensor-tang 已提交
43 44 45 46 47 48 49 50 51 52
    ONE_CASE(kVSigmoid);
    ONE_CASE(kVTanh);
    ONE_CASE(kLSTMCtHt);
    ONE_CASE(kLSTMC1H1);
    ONE_CASE(kGRUH1);
    ONE_CASE(kGRUHtPart1);
    ONE_CASE(kGRUHtPart2);
    ONE_CASE(kCRFDecoding);
    ONE_CASE(kLayerNorm);
    ONE_CASE(kNCHW16CMulNC);
53
    ONE_CASE(kSeqPool);
T
tensor-tang 已提交
54
    ONE_CASE(kMatMul);
55 56 57
    ONE_CASE(kHMax);
    ONE_CASE(kHSum);
    ONE_CASE(kSoftmax);
58
    ONE_CASE(kEmbSeqPool);
59
    ONE_CASE(kSgd);
60
    default:
T
tensor-tang 已提交
61
      PADDLE_THROW("Not support type: %d, or forget to add it.", kt);
62 63 64 65
      return "NOT JITKernel";
  }
  return nullptr;
}
66 67 68 69 70 71 72 73 74 75 76 77 78

const char* to_string(SeqPoolType tp) {
  switch (tp) {
    ONE_CASE(kNonePoolType);
    ONE_CASE(kSum);
    ONE_CASE(kAvg);
    ONE_CASE(kSqrt);
    default:
      PADDLE_THROW("Not support type: %d, or forget to add it.", tp);
      return "NOT PoolType";
  }
  return nullptr;
}
79
#undef ONE_CASE
80

T
tensor-tang 已提交
81 82 83 84
KernelType to_kerneltype(const std::string& act) {
  std::string lower = act;
  std::transform(lower.begin(), lower.end(), lower.begin(), ::tolower);
  if (lower == "relu" || lower == "vrelu") {
T
tensor-tang 已提交
85
    return kVRelu;
T
tensor-tang 已提交
86
  } else if (lower == "identity" || lower == "videntity" || lower == "") {
T
tensor-tang 已提交
87
    return kVIdentity;
T
tensor-tang 已提交
88
  } else if (lower == "exp" || lower == "vexp") {
T
tensor-tang 已提交
89
    return kVExp;
T
tensor-tang 已提交
90
  } else if (lower == "sigmoid" || lower == "vsigmoid") {
T
tensor-tang 已提交
91
    return kVSigmoid;
T
tensor-tang 已提交
92
  } else if (lower == "tanh" || lower == "vtanh") {
T
tensor-tang 已提交
93
    return kVTanh;
T
tensor-tang 已提交
94
  }
95
  PADDLE_THROW("Not support type: %s, or forget to add this case", act);
T
tensor-tang 已提交
96
  return kNone;
T
tensor-tang 已提交
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
template <>
void pack_weights<float>(const float* src, float* dst, int n, int k) {
  int block, rest;
  const auto groups = packed_groups(n, k, &block, &rest);
  std::for_each(groups.begin(), groups.end(), [&](int i) {
    PADDLE_ENFORCE_GT(i, 0, "each element of groups should be larger than 0.");
  });
  int sum = std::accumulate(groups.begin(), groups.end(), 0);
  std::memset(dst, 0, k * sum * block * sizeof(float));
  PADDLE_ENFORCE_GE(sum * block, n,
                    "The packed n should be equal to or larger than n");

  const int block_len = sizeof(float) * block;
  int n_offset = 0;

  for (size_t g = 0; g < groups.size(); ++g) {
    const float* from = src + n_offset;
    for (int j = 0; j < k; ++j) {
      size_t copy_sz = groups[g] * block_len;
      if (g == groups.size() - 1 && rest != 0) {
        copy_sz = (groups[g] - 1) * block_len + rest * sizeof(float);
      }
      std::memcpy(dst, from + j * n, copy_sz);
      dst += groups[g] * block;
    }
    n_offset += groups[g] * block;
  }
}

template <typename T>
typename std::enable_if<!std::is_same<T, float>::value>::type pack_weights(
    const T* src, T* dst, int n, int k) {
  PADDLE_THROW("Only support pack with float type.");
}

134 135 136
}  // namespace jit
}  // namespace operators
}  // namespace paddle