/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "paddle/fluid/operators/jit/helper.h" #include // tolower #include #include #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace operators { namespace jit { #define ONE_CASE(key) \ case key: \ return #key const char* to_string(KernelType kt) { switch (kt) { ONE_CASE(kNone); ONE_CASE(kVMul); ONE_CASE(kVAdd); ONE_CASE(kVAddRelu); ONE_CASE(kVSub); ONE_CASE(kVScal); ONE_CASE(kVAddBias); ONE_CASE(kVRelu); ONE_CASE(kVBroadcast); ONE_CASE(kVCopy); ONE_CASE(kVIdentity); ONE_CASE(kVExp); ONE_CASE(kVSquare); ONE_CASE(kVSigmoid); ONE_CASE(kVTanh); ONE_CASE(kLSTMCtHt); ONE_CASE(kLSTMC1H1); ONE_CASE(kGRUH1); ONE_CASE(kGRUHtPart1); ONE_CASE(kGRUHtPart2); ONE_CASE(kCRFDecoding); ONE_CASE(kLayerNorm); ONE_CASE(kNCHW16CMulNC); ONE_CASE(kSeqPool); ONE_CASE(kMatMul); ONE_CASE(kHMax); ONE_CASE(kHSum); ONE_CASE(kSoftmax); ONE_CASE(kEmbSeqPool); ONE_CASE(kSgd); default: PADDLE_THROW("Not support type: %d, or forget to add it.", kt); return "NOT JITKernel"; } return nullptr; } const char* to_string(SeqPoolType tp) { switch (tp) { ONE_CASE(kNonePoolType); ONE_CASE(kSum); ONE_CASE(kAvg); ONE_CASE(kSqrt); default: PADDLE_THROW("Not support type: %d, or forget to add it.", tp); return "NOT PoolType"; } return nullptr; } #undef ONE_CASE KernelType to_kerneltype(const std::string& act) { std::string lower = act; std::transform(lower.begin(), lower.end(), lower.begin(), ::tolower); if (lower == "relu" || lower == "vrelu") { return kVRelu; } else if (lower == "identity" || lower == "videntity" || lower == "") { return kVIdentity; } else if (lower == "exp" || lower == "vexp") { return kVExp; } else if (lower == "sigmoid" || lower == "vsigmoid") { return kVSigmoid; } else if (lower == "tanh" || lower == "vtanh") { return kVTanh; } PADDLE_THROW("Not support type: %s, or forget to add this case", act); return kNone; } template <> void pack_weights(const float* src, float* dst, int n, int k) { int block, rest; const auto groups = packed_groups(n, k, &block, &rest); std::for_each(groups.begin(), groups.end(), [&](int i) { PADDLE_ENFORCE_GT(i, 0, "each element of groups should be larger than 0."); }); int sum = std::accumulate(groups.begin(), groups.end(), 0); std::memset(dst, 0, k * sum * block * sizeof(float)); PADDLE_ENFORCE_GE(sum * block, n, "The packed n should be equal to or larger than n"); const int block_len = sizeof(float) * block; int n_offset = 0; for (size_t g = 0; g < groups.size(); ++g) { const float* from = src + n_offset; for (int j = 0; j < k; ++j) { size_t copy_sz = groups[g] * block_len; if (g == groups.size() - 1 && rest != 0) { copy_sz = (groups[g] - 1) * block_len + rest * sizeof(float); } std::memcpy(dst, from + j * n, copy_sz); dst += groups[g] * block; } n_offset += groups[g] * block; } } template typename std::enable_if::value>::type pack_weights( const T* src, T* dst, int n, int k) { PADDLE_THROW("Only support pack with float type."); } } // namespace jit } // namespace operators } // namespace paddle