prepared_operator.cc 25.1 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/prepared_operator.h"
16

17
#include "paddle/fluid/framework/data_type_transform.h"
18
#include "paddle/fluid/framework/details/nan_inf_utils.h"
19
#include "paddle/fluid/imperative/infer_shape_context.h"
20
#include "paddle/fluid/imperative/tracer.h"
21
#include "paddle/pten/common/scalar.h"
22
#include "paddle/pten/common/scalar_array.h"
23
#include "paddle/utils/small_vector.h"
Q
QingshuChen 已提交
24
#ifdef PADDLE_WITH_XPU
25
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
Q
QingshuChen 已提交
26
#endif
27 28
#include "paddle/fluid/platform/device/gpu/gpu_info.h"

29
DECLARE_bool(check_nan_inf);
30
DECLARE_bool(run_pten_kernel);
31
DECLARE_bool(benchmark);
F
Feng Xing 已提交
32
DECLARE_bool(run_kp_kernel);
33

J
Jiabin Yang 已提交
34 35 36
namespace paddle {
namespace imperative {

37 38 39 40 41 42 43 44 45 46
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var) {
  return var->SharedVar();
}

const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var) {
  return var;
}

J
Jiabin Yang 已提交
47 48 49 50 51 52 53 54 55 56
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
  if (var.IsType<framework::LoDTensor>()) {
    return &(var.Get<framework::LoDTensor>());
  } else if (var.IsType<framework::SelectedRows>()) {
    return &(var.Get<framework::SelectedRows>().value());
  } else {
    return nullptr;
  }
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
static const framework::Attribute& GetAttr(
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(
      found, true,
      platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
  return it->second;
}

72
template <typename VarType>
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
static void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
  for (auto& pair : outs) {
    for (auto& var : pair.second) {
      if (var == nullptr) {
        continue;
      }
      if (var->ForwardDataType() ==
          static_cast<framework::proto::VarType::Type>(-1)) {
        VLOG(6) << "Var (" << var->Name()
                << ")'s forward data type is not set.";
        continue;
      }
      if (!framework::IsComplexType(var->DataType()) ||
          framework::IsComplexType(var->ForwardDataType())) {
        continue;
      }
      const auto* tensor = GetTensorFromVar(var->Var());
J
Jiabin Yang 已提交
90
      if (tensor && tensor->IsInitialized()) {
91 92 93 94 95 96 97 98
        VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
                << " var `" << var->Name() << "` to "
                << framework::DataTypeToString(var->ForwardDataType())
                << " real var in dynamic graph.";
        framework::Tensor out;
        framework::TransComplexToReal(var->ForwardDataType(), var->DataType(),
                                      *tensor, &out);
        SetTensorToVariable(var->Var(), out, var->MutableVar());
J
Jiabin Yang 已提交
99 100 101 102 103 104 105
      }
    }
  }
}

PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
106
                       const framework::OpKernelType& kernel_type,
107
                       const framework::OperatorWithKernel::OpKernelFunc& func,
108
                       platform::DeviceContext* dev_ctx)
109 110 111 112 113 114
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
      dev_ctx_(dev_ctx) {}

115 116 117 118 119 120 121 122 123 124 125 126 127
PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
                       const framework::OpKernelType& kernel_type,
                       const framework::KernelSignature& kernel_signature,
                       const pten::Kernel& pt_kernel,
                       platform::DeviceContext* dev_ctx)
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(nullptr),
      dev_ctx_(dev_ctx),
      run_pten_kernel_(true),
      pt_kernel_signature_(kernel_signature),
128
      pt_kernel_(pt_kernel) {}
129

130 131 132 133 134
template <typename VarType>
PreparedOp PrepareImpl(const NameVarMap<VarType>& ins,
                       const NameVarMap<VarType>& outs,
                       const framework::OperatorWithKernel& op,
                       const platform::Place& place,
135
                       const framework::AttributeMap& attrs,
136
                       const framework::AttributeMap& default_attrs) {
137
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
138
  auto* dev_ctx = pool.Get(place);
139

140 141 142 143 144 145 146 147
  framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
148 149 150 151
    mutable_op_attrs = default_attrs;
    for (auto& attr : attrs) {
      mutable_op_attrs[attr.first] = attr.second;
    }
152 153
  }
#endif
J
Jiabin Yang 已提交
154

155
  // 1. get expected kernel key
156 157 158
  auto dygraph_exe_ctx = DygraphExecutionContext<VarType>(
      op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs, default_attrs);
  auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx);
159 160
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

161 162 163
  if (FLAGS_run_pten_kernel &&
      pten::KernelFactory::Instance().HasCompatiblePtenKernel(op.Type())) {
    auto pt_kernel_signature = op.GetExpectedPtenKernelArgs(dygraph_exe_ctx);
164
    VLOG(6) << pt_kernel_signature;
165

Y
YuanRisheng 已提交
166
    auto pt_kernel_name = pt_kernel_signature.name;
167 168 169 170 171
    auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(expected_kernel_key);
    auto pt_kernel = pten::KernelFactory::Instance().SelectKernel(
        pt_kernel_name, pt_kernel_key);

    if (pt_kernel.IsValid()) {
C
Chen Weihang 已提交
172
      VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << pt_kernel_name
173 174 175
              << " | kernel key: " << pt_kernel_key
              << " | kernel: " << pt_kernel;

W
Wilber 已提交
176 177 178 179 180
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        auto* cpu_ctx = pool.Get(paddle::platform::CPUPlace());
        return PreparedOp(op, ctx, expected_kernel_key, pt_kernel_signature,
                          pt_kernel, cpu_ctx);
      }
181 182
      // TODO(chenweihang): using CPUKernel when miss device kernel case
      return PreparedOp(op, ctx, expected_kernel_key, pt_kernel_signature,
183
                        pt_kernel, dev_ctx);
184
    } else {
C
Chen Weihang 已提交
185
      VLOG(6) << "Dynamic mode ChoosePtenKernel - kernel `" << pt_kernel_name
186 187 188 189
              << "` not found.";
    }
  }

190
  // 2. check if op[type] has kernel registered.
J
Jiabin Yang 已提交
191 192
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
193 194 195 196 197
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));
J
Jiabin Yang 已提交
198 199 200

  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
201
#ifdef PADDLE_WITH_XPU
202
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
203 204 205
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(op.Type()))) {
206 207 208
    VLOG(3) << "missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
209 210 211
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
212 213 214
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
215
      paddle::platform::is_npu_place(expected_kernel_key.place_)) {
216 217 218
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
219 220 221
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
222 223 224
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
225
      paddle::platform::is_mlu_place(expected_kernel_key.place_)) {
226 227 228 229 230 231
    VLOG(3) << "missing MLU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
232
#endif
233 234
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that
  // case
235 236 237 238
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator %s does not have kernel for %s.", op.Type(),
                        KernelTypeToString(expected_kernel_key)));
239

240 241 242 243
  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

244
  return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
245 246
}

247 248 249 250
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
                               const NameVarMap<VarBase>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
251
                               const framework::AttributeMap& attrs,
252 253
                               const framework::AttributeMap& default_attrs) {
  return PrepareImpl<VarBase>(ins, outs, op, place, attrs, default_attrs);
254 255 256 257 258 259
}

PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
                               const NameVarMap<VariableWrapper>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
260
                               const framework::AttributeMap& attrs,
261
                               const framework::AttributeMap& default_attrs) {
262
  return PrepareImpl<VariableWrapper>(ins, outs, op, place, attrs,
263
                                      default_attrs);
264 265
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
template <typename VarType>
void PreparePtenData(const pten::Kernel& pt_kernel,
                     const framework::KernelSignature& pt_kernel_signature,
                     const NameVarMap<VarType>& ins) {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& input_defs = pt_kernel.args_def().input_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ins.at(input_names[i]);

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      auto var_base = ins_vector[offset];
      const auto* tensor_in = GetTensorFromVar(var_base->Var());
      if (tensor_in && tensor_in->IsInitialized()) {
        auto expected_place = pten::TransToFluidPlace(in_def.backend);
        if (platform::is_same_place(tensor_in->place(), expected_place)) {
          continue;
        }

        // TODO(zyfncg): Now there is no kernel which need to transform input
        // data, so we commented out following code temporarily,
        // and it will be used in the future.

        // VLOG(3) << "Pten Transform Variable " << var_base->Name() << " from "
        //         << tensor_in->place() << " to " << expected_place;

        // framework::Tensor tmp_tensor;
        // framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

        // SetTensorToVariable(var_base->Var(), tmp_tensor,
        //                     var_base->MutableVar());
      }
    }
  }
}

309
template <typename VarType>
310
static void BuildDygraphPtenKernelContext(
311 312 313 314
    const framework::KernelSignature& pt_kernel_signature,
    const pten::Kernel& pt_kernel, const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs,
315 316
    platform::DeviceContext* dev_ctx, pten::KernelContext* kernel_ctx) {
  kernel_ctx->SetDeviceContext(dev_ctx);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& attr_names = std::get<1>(pt_kernel_signature.args);
  auto& output_names = std::get<2>(pt_kernel_signature.args);

  auto& input_defs = pt_kernel.args_def().input_defs();
  auto& output_defs = pt_kernel.args_def().output_defs();
  auto& attr_defs = pt_kernel.args_def().attribute_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& ins_vector = ins.at(input_names[i]);
346 347 348

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);
    size_t end_idx = start_idx + ins_vector.size();
349 350

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
351 352
      const auto* tensor_in = GetTensorFromVar(ins_vector[offset]->Var());
      kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
353
    }
354
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
355 356 357
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
358
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);
359 360 361

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
362
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
363 364 365 366 367 368 369 370
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

371
    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
372 373 374 375
      if (outs_vector[offset] == nullptr) {
        kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
        continue;
      }
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
      auto* var = outs_vector[offset]->MutableVar();
      framework::Tensor* tensor_out = nullptr;
      if (var->template IsType<framework::LoDTensor>()) {
        tensor_out = var->template GetMutable<framework::LoDTensor>();
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported output `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
      }  // TODO(zyfncg): Add support for SelectedRows

      experimental::ResetTensorByArgDef(tensor_out, output_defs.at(i));
      framework::SetAllocationForOutputTenosr(
          tensor_out, pten::TransToFluidPlace(output_defs.at(i).backend));

      kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
391
    }
392
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
393 394 395
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
396 397 398 399 400 401 402 403
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      if (attrs.find(attr_names[i]) !=
          attrs.end()) {  // shape is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
404 405 406 407
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to VectorTensor when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVar(ins_vector[0]->Var())));
        } else {  // ShapeTensorList
          std::vector<framework::Variable*> variables;
          variables.reserve(ins_vector.size());
          for (const auto& var_base : ins_vector) {
            variables.push_back(var_base->MutableVar());
          }
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVarList(variables)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
431 432 433
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
434 435 436 437 438 439 440 441 442 443 444
      if (attrs.find(attr_names[i]) != attrs.end() ||
          default_attrs.find(attr_names[i]) !=
              default_attrs.end()) {  // scalar is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
445 446 447 448
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(int, attr))));
449 450 451 452 453 454 455 456 457 458
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext in dygraph.",
              attr_names[i]));
        }
      } else {  // scalar is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        kernel_ctx->EmplaceBackAttr(std::move(
            experimental::MakePtenScalarFromVar(ins_vector[0]->Var())));
459
      }
460

461 462
    } else {
      // TODO(chenweihang): support other attrs later
463
      auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
464
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
465
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
466
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
467
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
468
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
469
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
470
      } else if (attr_defs[i].type_index ==
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        kernel_ctx->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          kernel_ctx->EmplaceBackAttr(vector_int64_attr);
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr
487 488
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
489
            "Unsupported cast op attribute `%s` when construct "
490 491 492 493 494 495 496
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    }
  }
}

497 498 499
template <typename VarType>
static void PreparedOpRunImpl(
    const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
500
    const framework::OpKernelType& kernel_type,
501
    const framework::OperatorWithKernel::OpKernelFunc& func,
502
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
503 504
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs) {
J
Jiabin Yang 已提交
505 506
  // TODO(zjl): remove scope in dygraph
  framework::Scope scope;
H
hong 已提交
507

508 509
  DygraphInferShapeContext<VarType> infer_shape_ctx(
      &ins, &outs, &attrs, &default_attrs, op.Type(), &kernel_type);
510
  op.Info().infer_shape_(&infer_shape_ctx);
H
hong 已提交
511

512
  func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
513
                                        attrs, default_attrs));
514

515 516 517 518 519
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

L
Leo Chen 已提交
520 521 522 523 524 525 526 527
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
543
}
H
hong 已提交
544

545 546 547
template <typename VarType>
static void PreparedOpRunPtImpl(
    const framework::OperatorBase& op,
548
    const framework::OpKernelType& kernel_type,
549
    const framework::KernelSignature& pt_kernel_signature,
550 551 552
    const pten::Kernel& pt_kernel, platform::DeviceContext* dev_ctx,
    const NameVarMap<VarType>& ins, const NameVarMap<VarType>& outs,
    const framework::AttributeMap& attrs,
553
    const framework::AttributeMap& default_attrs) {
554 555
  DygraphInferShapeContext<VarType> infer_shape_ctx(
      &ins, &outs, &attrs, &default_attrs, op.Type(), &kernel_type);
556
  op.Info().infer_shape_(&infer_shape_ctx);
557

558 559
  PreparePtenData<VarType>(pt_kernel, pt_kernel_signature, ins);

560
  pten::KernelContext pt_kernel_context;
561 562
  BuildDygraphPtenKernelContext<VarType>(pt_kernel_signature, pt_kernel, ins,
                                         outs, attrs, default_attrs, dev_ctx,
563
                                         &pt_kernel_context);
564

565
  pt_kernel(&pt_kernel_context);
566

567 568
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
569 570
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
571 572 573 574
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

575
  // TODO(chenweihang): add debug flags later
576 577 578
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
579 580
}

581 582
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
                     const NameVarMap<VarBase>& outs,
583 584
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
585
  if (run_pten_kernel_) {
586
    PreparedOpRunPtImpl<VarBase>(op_, kernel_type_, pt_kernel_signature_,
587 588
                                 pt_kernel_, dev_ctx_, ins, outs, attrs,
                                 default_attrs);
589 590 591 592
  } else {
    PreparedOpRunImpl<VarBase>(op_, ctx_, kernel_type_, func_, dev_ctx_, ins,
                               outs, attrs, default_attrs);
  }
593
}
H
hong 已提交
594

595 596
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
                     const NameVarMap<VariableWrapper>& outs,
597 598
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
599
  if (run_pten_kernel_) {
600
    PreparedOpRunPtImpl<VariableWrapper>(
601 602
        op_, kernel_type_, pt_kernel_signature_, pt_kernel_, dev_ctx_, ins,
        outs, attrs, default_attrs);
603 604 605 606
  } else {
    PreparedOpRunImpl<VariableWrapper>(op_, ctx_, kernel_type_, func_, dev_ctx_,
                                       ins, outs, attrs, default_attrs);
  }
J
Jiabin Yang 已提交
607 608 609 610
}

}  // namespace imperative
}  // namespace paddle