prepared_operator.cc 24.5 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/prepared_operator.h"
16

17
#include "paddle/fluid/framework/data_type_transform.h"
18
#include "paddle/fluid/framework/details/nan_inf_utils.h"
19
#include "paddle/fluid/imperative/infer_shape_context.h"
20
#include "paddle/fluid/imperative/tracer.h"
21
#include "paddle/pten/common/scalar.h"
22
#include "paddle/pten/common/scalar_array.h"
23
#include "paddle/utils/small_vector.h"
Q
QingshuChen 已提交
24
#ifdef PADDLE_WITH_XPU
25
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
Q
QingshuChen 已提交
26
#endif
27 28
#include "paddle/fluid/platform/device/gpu/gpu_info.h"

29
DECLARE_bool(check_nan_inf);
30
DECLARE_bool(run_pten_kernel);
31
DECLARE_bool(benchmark);
F
Feng Xing 已提交
32
DECLARE_bool(run_kp_kernel);
33

J
Jiabin Yang 已提交
34 35 36
namespace paddle {
namespace imperative {

37 38 39 40 41 42 43 44 45 46
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var) {
  return var->SharedVar();
}

const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var) {
  return var;
}

J
Jiabin Yang 已提交
47 48 49 50 51 52 53 54 55 56
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
  if (var.IsType<framework::LoDTensor>()) {
    return &(var.Get<framework::LoDTensor>());
  } else if (var.IsType<framework::SelectedRows>()) {
    return &(var.Get<framework::SelectedRows>().value());
  } else {
    return nullptr;
  }
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
static const framework::Attribute& GetAttr(
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(
      found, true,
      platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
  return it->second;
}

72
template <typename VarType>
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
static void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
  for (auto& pair : outs) {
    for (auto& var : pair.second) {
      if (var == nullptr) {
        continue;
      }
      if (var->ForwardDataType() ==
          static_cast<framework::proto::VarType::Type>(-1)) {
        VLOG(6) << "Var (" << var->Name()
                << ")'s forward data type is not set.";
        continue;
      }
      if (!framework::IsComplexType(var->DataType()) ||
          framework::IsComplexType(var->ForwardDataType())) {
        continue;
      }
      const auto* tensor = GetTensorFromVar(var->Var());
J
Jiabin Yang 已提交
90
      if (tensor && tensor->IsInitialized()) {
91 92 93 94 95 96 97 98
        VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
                << " var `" << var->Name() << "` to "
                << framework::DataTypeToString(var->ForwardDataType())
                << " real var in dynamic graph.";
        framework::Tensor out;
        framework::TransComplexToReal(var->ForwardDataType(), var->DataType(),
                                      *tensor, &out);
        SetTensorToVariable(var->Var(), out, var->MutableVar());
J
Jiabin Yang 已提交
99 100 101 102 103 104 105
      }
    }
  }
}

PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
106
                       const framework::OpKernelType& kernel_type,
107
                       const framework::OperatorWithKernel::OpKernelFunc& func,
108
                       platform::DeviceContext* dev_ctx)
109 110 111 112 113 114
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
      dev_ctx_(dev_ctx) {}

115 116 117 118 119 120 121 122 123 124 125 126 127
PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
                       const framework::OpKernelType& kernel_type,
                       const framework::KernelSignature& kernel_signature,
                       const pten::Kernel& pt_kernel,
                       platform::DeviceContext* dev_ctx)
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(nullptr),
      dev_ctx_(dev_ctx),
      run_pten_kernel_(true),
      pt_kernel_signature_(kernel_signature),
128
      pt_kernel_(pt_kernel) {}
129

130 131 132 133 134
template <typename VarType>
PreparedOp PrepareImpl(const NameVarMap<VarType>& ins,
                       const NameVarMap<VarType>& outs,
                       const framework::OperatorWithKernel& op,
                       const platform::Place& place,
135
                       const framework::AttributeMap& attrs,
136
                       const framework::AttributeMap& default_attrs) {
137
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
138
  auto* dev_ctx = pool.Get(place);
139

140 141 142 143 144 145 146 147
  framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
148 149 150 151
    mutable_op_attrs = default_attrs;
    for (auto& attr : attrs) {
      mutable_op_attrs[attr.first] = attr.second;
    }
152 153
  }
#endif
J
Jiabin Yang 已提交
154

155
  // 1. get expected kernel key
156 157 158
  auto dygraph_exe_ctx = DygraphExecutionContext<VarType>(
      op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs, default_attrs);
  auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx);
159 160
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

161 162 163
  if (FLAGS_run_pten_kernel &&
      pten::KernelFactory::Instance().HasCompatiblePtenKernel(op.Type())) {
    auto pt_kernel_signature = op.GetExpectedPtenKernelArgs(dygraph_exe_ctx);
164
    VLOG(6) << pt_kernel_signature;
165

Y
YuanRisheng 已提交
166
    auto pt_kernel_name = pt_kernel_signature.name;
167 168 169 170 171
    auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(expected_kernel_key);
    auto pt_kernel = pten::KernelFactory::Instance().SelectKernel(
        pt_kernel_name, pt_kernel_key);

    if (pt_kernel.IsValid()) {
C
Chen Weihang 已提交
172
      VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << pt_kernel_name
173 174 175 176 177
              << " | kernel key: " << pt_kernel_key
              << " | kernel: " << pt_kernel;

      // TODO(chenweihang): using CPUKernel when miss device kernel case
      return PreparedOp(op, ctx, expected_kernel_key, pt_kernel_signature,
178
                        pt_kernel, dev_ctx);
179
    } else {
C
Chen Weihang 已提交
180
      VLOG(6) << "Dynamic mode ChoosePtenKernel - kernel `" << pt_kernel_name
181 182 183 184
              << "` not found.";
    }
  }

185
  // 2. check if op[type] has kernel registered.
J
Jiabin Yang 已提交
186 187
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
188 189 190 191 192
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));
J
Jiabin Yang 已提交
193 194 195

  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
196
#ifdef PADDLE_WITH_XPU
197
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
198 199 200
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(op.Type()))) {
201 202 203
    VLOG(3) << "missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
204 205 206
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
207 208 209
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
210
      paddle::platform::is_npu_place(expected_kernel_key.place_)) {
211 212 213
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
214 215 216
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
217 218 219
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
220
      paddle::platform::is_mlu_place(expected_kernel_key.place_)) {
221 222 223 224 225 226
    VLOG(3) << "missing MLU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
227
#endif
228 229
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that
  // case
230 231 232 233
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator %s does not have kernel for %s.", op.Type(),
                        KernelTypeToString(expected_kernel_key)));
234

235 236 237 238
  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

239
  return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
240 241
}

242 243 244 245
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
                               const NameVarMap<VarBase>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
246
                               const framework::AttributeMap& attrs,
247 248
                               const framework::AttributeMap& default_attrs) {
  return PrepareImpl<VarBase>(ins, outs, op, place, attrs, default_attrs);
249 250 251 252 253 254
}

PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
                               const NameVarMap<VariableWrapper>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
255
                               const framework::AttributeMap& attrs,
256
                               const framework::AttributeMap& default_attrs) {
257
  return PrepareImpl<VariableWrapper>(ins, outs, op, place, attrs,
258
                                      default_attrs);
259 260
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
template <typename VarType>
void PreparePtenData(const pten::Kernel& pt_kernel,
                     const framework::KernelSignature& pt_kernel_signature,
                     const NameVarMap<VarType>& ins) {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& input_defs = pt_kernel.args_def().input_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ins.at(input_names[i]);

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      auto var_base = ins_vector[offset];
      const auto* tensor_in = GetTensorFromVar(var_base->Var());
      if (tensor_in && tensor_in->IsInitialized()) {
        auto expected_place = pten::TransToFluidPlace(in_def.backend);
        if (platform::is_same_place(tensor_in->place(), expected_place)) {
          continue;
        }

        // TODO(zyfncg): Now there is no kernel which need to transform input
        // data, so we commented out following code temporarily,
        // and it will be used in the future.

        // VLOG(3) << "Pten Transform Variable " << var_base->Name() << " from "
        //         << tensor_in->place() << " to " << expected_place;

        // framework::Tensor tmp_tensor;
        // framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

        // SetTensorToVariable(var_base->Var(), tmp_tensor,
        //                     var_base->MutableVar());
      }
    }
  }
}

304
template <typename VarType>
305
static void BuildDygraphPtenKernelContext(
306 307 308 309
    const framework::KernelSignature& pt_kernel_signature,
    const pten::Kernel& pt_kernel, const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs,
310 311
    platform::DeviceContext* dev_ctx, pten::KernelContext* kernel_ctx) {
  kernel_ctx->SetDeviceContext(dev_ctx);
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& attr_names = std::get<1>(pt_kernel_signature.args);
  auto& output_names = std::get<2>(pt_kernel_signature.args);

  auto& input_defs = pt_kernel.args_def().input_defs();
  auto& output_defs = pt_kernel.args_def().output_defs();
  auto& attr_defs = pt_kernel.args_def().attribute_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& ins_vector = ins.at(input_names[i]);
341 342 343

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);
    size_t end_idx = start_idx + ins_vector.size();
344 345

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
346 347
      const auto* tensor_in = GetTensorFromVar(ins_vector[offset]->Var());
      kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
348
    }
349
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
350 351 352
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
353
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);
354 355 356

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
357
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
358 359 360 361 362 363 364 365
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

366
    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
      auto* var = outs_vector[offset]->MutableVar();
      framework::Tensor* tensor_out = nullptr;
      if (var->template IsType<framework::LoDTensor>()) {
        tensor_out = var->template GetMutable<framework::LoDTensor>();
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported output `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
      }  // TODO(zyfncg): Add support for SelectedRows

      experimental::ResetTensorByArgDef(tensor_out, output_defs.at(i));
      framework::SetAllocationForOutputTenosr(
          tensor_out, pten::TransToFluidPlace(output_defs.at(i).backend));

      kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
382
    }
383
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
384 385 386
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
387 388 389 390 391 392 393 394
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      if (attrs.find(attr_names[i]) !=
          attrs.end()) {  // shape is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
395 396 397 398
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to VectorTensor when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVar(ins_vector[0]->Var())));
        } else {  // ShapeTensorList
          std::vector<framework::Variable*> variables;
          variables.reserve(ins_vector.size());
          for (const auto& var_base : ins_vector) {
            variables.push_back(var_base->MutableVar());
          }
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVarList(variables)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
422 423 424
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
      if (attrs.find(attr_names[i]) != attrs.end() ||
          default_attrs.find(attr_names[i]) !=
              default_attrs.end()) {  // scalar is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext in dygraph.",
              attr_names[i]));
        }
      } else {  // scalar is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        kernel_ctx->EmplaceBackAttr(std::move(
            experimental::MakePtenScalarFromVar(ins_vector[0]->Var())));
446
      }
447

448 449
    } else {
      // TODO(chenweihang): support other attrs later
450
      auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
451
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
452
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
453
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
454
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
455
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
456
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
457
      } else if (attr_defs[i].type_index ==
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        kernel_ctx->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          kernel_ctx->EmplaceBackAttr(vector_int64_attr);
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr
474 475
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
476
            "Unsupported cast op attribute `%s` when construct "
477 478 479 480 481 482 483
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    }
  }
}

484 485 486
template <typename VarType>
static void PreparedOpRunImpl(
    const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
487
    const framework::OpKernelType& kernel_type,
488
    const framework::OperatorWithKernel::OpKernelFunc& func,
489
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
490 491
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs) {
J
Jiabin Yang 已提交
492 493
  // TODO(zjl): remove scope in dygraph
  framework::Scope scope;
H
hong 已提交
494

495 496
  DygraphInferShapeContext<VarType> infer_shape_ctx(
      &ins, &outs, &attrs, &default_attrs, op.Type(), &kernel_type);
497
  op.Info().infer_shape_(&infer_shape_ctx);
H
hong 已提交
498

499
  func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
500
                                        attrs, default_attrs));
501

502 503 504 505 506
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

L
Leo Chen 已提交
507 508 509 510 511 512 513 514
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
530
}
H
hong 已提交
531

532 533 534
template <typename VarType>
static void PreparedOpRunPtImpl(
    const framework::OperatorBase& op,
535
    const framework::OpKernelType& kernel_type,
536
    const framework::KernelSignature& pt_kernel_signature,
537 538 539
    const pten::Kernel& pt_kernel, platform::DeviceContext* dev_ctx,
    const NameVarMap<VarType>& ins, const NameVarMap<VarType>& outs,
    const framework::AttributeMap& attrs,
540
    const framework::AttributeMap& default_attrs) {
541 542
  DygraphInferShapeContext<VarType> infer_shape_ctx(
      &ins, &outs, &attrs, &default_attrs, op.Type(), &kernel_type);
543
  op.Info().infer_shape_(&infer_shape_ctx);
544

545 546
  PreparePtenData<VarType>(pt_kernel, pt_kernel_signature, ins);

547
  pten::KernelContext pt_kernel_context;
548 549
  BuildDygraphPtenKernelContext<VarType>(pt_kernel_signature, pt_kernel, ins,
                                         outs, attrs, default_attrs, dev_ctx,
550
                                         &pt_kernel_context);
551

552
  pt_kernel(&pt_kernel_context);
553

554 555
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
556 557
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
558 559 560 561
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

562
  // TODO(chenweihang): add debug flags later
563 564 565
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
566 567
}

568 569
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
                     const NameVarMap<VarBase>& outs,
570 571
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
572
  if (run_pten_kernel_) {
573
    PreparedOpRunPtImpl<VarBase>(op_, kernel_type_, pt_kernel_signature_,
574 575
                                 pt_kernel_, dev_ctx_, ins, outs, attrs,
                                 default_attrs);
576 577 578 579
  } else {
    PreparedOpRunImpl<VarBase>(op_, ctx_, kernel_type_, func_, dev_ctx_, ins,
                               outs, attrs, default_attrs);
  }
580
}
H
hong 已提交
581

582 583
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
                     const NameVarMap<VariableWrapper>& outs,
584 585
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
586
  if (run_pten_kernel_) {
587
    PreparedOpRunPtImpl<VariableWrapper>(
588 589
        op_, kernel_type_, pt_kernel_signature_, pt_kernel_, dev_ctx_, ins,
        outs, attrs, default_attrs);
590 591 592 593
  } else {
    PreparedOpRunImpl<VariableWrapper>(op_, ctx_, kernel_type_, func_, dev_ctx_,
                                       ins, outs, attrs, default_attrs);
  }
J
Jiabin Yang 已提交
594 595 596 597
}

}  // namespace imperative
}  // namespace paddle