prepared_operator.cc 24.8 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/prepared_operator.h"
16

17
#include "paddle/fluid/framework/data_type_transform.h"
18
#include "paddle/fluid/framework/details/nan_inf_utils.h"
19
#include "paddle/fluid/imperative/infer_shape_context.h"
20
#include "paddle/fluid/imperative/tracer.h"
21
#include "paddle/pten/common/scalar.h"
22
#include "paddle/pten/common/scalar_array.h"
23
#include "paddle/utils/small_vector.h"
Q
QingshuChen 已提交
24
#ifdef PADDLE_WITH_XPU
25
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
Q
QingshuChen 已提交
26
#endif
27 28
#include "paddle/fluid/platform/device/gpu/gpu_info.h"

29
DECLARE_bool(check_nan_inf);
30
DECLARE_bool(run_pten_kernel);
31
DECLARE_bool(benchmark);
F
Feng Xing 已提交
32
DECLARE_bool(run_kp_kernel);
33

J
Jiabin Yang 已提交
34 35 36
namespace paddle {
namespace imperative {

37 38 39 40 41 42 43 44 45 46
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var) {
  return var->SharedVar();
}

const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var) {
  return var;
}

J
Jiabin Yang 已提交
47 48 49 50 51 52 53 54 55 56
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
  if (var.IsType<framework::LoDTensor>()) {
    return &(var.Get<framework::LoDTensor>());
  } else if (var.IsType<framework::SelectedRows>()) {
    return &(var.Get<framework::SelectedRows>().value());
  } else {
    return nullptr;
  }
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
static const framework::Attribute& GetAttr(
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(
      found, true,
      platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
  return it->second;
}

72
template <typename VarType>
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
static void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
  for (auto& pair : outs) {
    for (auto& var : pair.second) {
      if (var == nullptr) {
        continue;
      }
      if (var->ForwardDataType() ==
          static_cast<framework::proto::VarType::Type>(-1)) {
        VLOG(6) << "Var (" << var->Name()
                << ")'s forward data type is not set.";
        continue;
      }
      if (!framework::IsComplexType(var->DataType()) ||
          framework::IsComplexType(var->ForwardDataType())) {
        continue;
      }
      const auto* tensor = GetTensorFromVar(var->Var());
J
Jiabin Yang 已提交
90
      if (tensor && tensor->IsInitialized()) {
91 92 93 94 95 96 97 98
        VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
                << " var `" << var->Name() << "` to "
                << framework::DataTypeToString(var->ForwardDataType())
                << " real var in dynamic graph.";
        framework::Tensor out;
        framework::TransComplexToReal(var->ForwardDataType(), var->DataType(),
                                      *tensor, &out);
        SetTensorToVariable(var->Var(), out, var->MutableVar());
J
Jiabin Yang 已提交
99 100 101 102 103 104 105
      }
    }
  }
}

PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
106
                       const framework::OpKernelType& kernel_type,
107
                       const framework::OperatorWithKernel::OpKernelFunc& func,
108
                       platform::DeviceContext* dev_ctx)
109 110 111 112 113 114
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
      dev_ctx_(dev_ctx) {}

115 116 117 118 119 120 121 122 123 124 125 126 127
PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
                       const framework::OpKernelType& kernel_type,
                       const framework::KernelSignature& kernel_signature,
                       const pten::Kernel& pt_kernel,
                       platform::DeviceContext* dev_ctx)
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(nullptr),
      dev_ctx_(dev_ctx),
      run_pten_kernel_(true),
      pt_kernel_signature_(kernel_signature),
128
      pt_kernel_(pt_kernel) {}
129

130 131 132 133 134
template <typename VarType>
PreparedOp PrepareImpl(const NameVarMap<VarType>& ins,
                       const NameVarMap<VarType>& outs,
                       const framework::OperatorWithKernel& op,
                       const platform::Place& place,
135
                       const framework::AttributeMap& attrs,
136
                       const framework::AttributeMap& default_attrs) {
137
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
138
  auto* dev_ctx = pool.Get(place);
139

140 141 142 143 144 145 146 147
  framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
148 149 150 151
    mutable_op_attrs = default_attrs;
    for (auto& attr : attrs) {
      mutable_op_attrs[attr.first] = attr.second;
    }
152 153
  }
#endif
J
Jiabin Yang 已提交
154

155
  // 1. get expected kernel key
156 157 158
  auto dygraph_exe_ctx = DygraphExecutionContext<VarType>(
      op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs, default_attrs);
  auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx);
159 160
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

161 162 163
  if (FLAGS_run_pten_kernel &&
      pten::KernelFactory::Instance().HasCompatiblePtenKernel(op.Type())) {
    auto pt_kernel_signature = op.GetExpectedPtenKernelArgs(dygraph_exe_ctx);
164
    VLOG(6) << pt_kernel_signature;
165

Y
YuanRisheng 已提交
166
    auto pt_kernel_name = pt_kernel_signature.name;
167 168 169 170 171
    auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(expected_kernel_key);
    auto pt_kernel = pten::KernelFactory::Instance().SelectKernel(
        pt_kernel_name, pt_kernel_key);

    if (pt_kernel.IsValid()) {
C
Chen Weihang 已提交
172
      VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << pt_kernel_name
173 174 175
              << " | kernel key: " << pt_kernel_key
              << " | kernel: " << pt_kernel;

W
Wilber 已提交
176 177 178 179 180
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        auto* cpu_ctx = pool.Get(paddle::platform::CPUPlace());
        return PreparedOp(op, ctx, expected_kernel_key, pt_kernel_signature,
                          pt_kernel, cpu_ctx);
      }
181 182
      // TODO(chenweihang): using CPUKernel when miss device kernel case
      return PreparedOp(op, ctx, expected_kernel_key, pt_kernel_signature,
183
                        pt_kernel, dev_ctx);
184
    } else {
C
Chen Weihang 已提交
185
      VLOG(6) << "Dynamic mode ChoosePtenKernel - kernel `" << pt_kernel_name
186 187 188 189
              << "` not found.";
    }
  }

190
  // 2. check if op[type] has kernel registered.
J
Jiabin Yang 已提交
191 192
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
193 194 195 196 197
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));
J
Jiabin Yang 已提交
198 199 200

  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
201
#ifdef PADDLE_WITH_XPU
202
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
203 204 205
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(op.Type()))) {
206 207 208
    VLOG(3) << "missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
209 210 211
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
212 213 214
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
215
      paddle::platform::is_npu_place(expected_kernel_key.place_)) {
216 217 218
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
219 220 221
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
222 223 224
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
225
      paddle::platform::is_mlu_place(expected_kernel_key.place_)) {
226 227 228 229 230 231
    VLOG(3) << "missing MLU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
232
#endif
233 234
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that
  // case
235 236 237 238
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator %s does not have kernel for %s.", op.Type(),
                        KernelTypeToString(expected_kernel_key)));
239

240 241 242 243
  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

244
  return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
245 246
}

247 248 249 250
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
                               const NameVarMap<VarBase>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
251
                               const framework::AttributeMap& attrs,
252 253
                               const framework::AttributeMap& default_attrs) {
  return PrepareImpl<VarBase>(ins, outs, op, place, attrs, default_attrs);
254 255 256 257 258 259
}

PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
                               const NameVarMap<VariableWrapper>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
260
                               const framework::AttributeMap& attrs,
261
                               const framework::AttributeMap& default_attrs) {
262
  return PrepareImpl<VariableWrapper>(ins, outs, op, place, attrs,
263
                                      default_attrs);
264 265
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
template <typename VarType>
void PreparePtenData(const pten::Kernel& pt_kernel,
                     const framework::KernelSignature& pt_kernel_signature,
                     const NameVarMap<VarType>& ins) {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& input_defs = pt_kernel.args_def().input_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ins.at(input_names[i]);

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      auto var_base = ins_vector[offset];
      const auto* tensor_in = GetTensorFromVar(var_base->Var());
      if (tensor_in && tensor_in->IsInitialized()) {
        auto expected_place = pten::TransToFluidPlace(in_def.backend);
        if (platform::is_same_place(tensor_in->place(), expected_place)) {
          continue;
        }

        // TODO(zyfncg): Now there is no kernel which need to transform input
        // data, so we commented out following code temporarily,
        // and it will be used in the future.

        // VLOG(3) << "Pten Transform Variable " << var_base->Name() << " from "
        //         << tensor_in->place() << " to " << expected_place;

        // framework::Tensor tmp_tensor;
        // framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

        // SetTensorToVariable(var_base->Var(), tmp_tensor,
        //                     var_base->MutableVar());
      }
    }
  }
}

309
template <typename VarType>
310
static void BuildDygraphPtenKernelContext(
311 312 313 314
    const framework::KernelSignature& pt_kernel_signature,
    const pten::Kernel& pt_kernel, const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs,
315 316
    platform::DeviceContext* dev_ctx, pten::KernelContext* kernel_ctx) {
  kernel_ctx->SetDeviceContext(dev_ctx);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& attr_names = std::get<1>(pt_kernel_signature.args);
  auto& output_names = std::get<2>(pt_kernel_signature.args);

  auto& input_defs = pt_kernel.args_def().input_defs();
  auto& output_defs = pt_kernel.args_def().output_defs();
  auto& attr_defs = pt_kernel.args_def().attribute_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& ins_vector = ins.at(input_names[i]);
346 347 348

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);
    size_t end_idx = start_idx + ins_vector.size();
349 350

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
351 352
      const auto* tensor_in = GetTensorFromVar(ins_vector[offset]->Var());
      kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
353
    }
354
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
355 356 357
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
358
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);
359 360 361

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
362
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
363 364 365 366 367 368 369 370
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

371
    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
      auto* var = outs_vector[offset]->MutableVar();
      framework::Tensor* tensor_out = nullptr;
      if (var->template IsType<framework::LoDTensor>()) {
        tensor_out = var->template GetMutable<framework::LoDTensor>();
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported output `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
      }  // TODO(zyfncg): Add support for SelectedRows

      experimental::ResetTensorByArgDef(tensor_out, output_defs.at(i));
      framework::SetAllocationForOutputTenosr(
          tensor_out, pten::TransToFluidPlace(output_defs.at(i).backend));

      kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
387
    }
388
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
389 390 391
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
392 393 394 395 396 397 398 399
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      if (attrs.find(attr_names[i]) !=
          attrs.end()) {  // shape is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
400 401 402 403
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to VectorTensor when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVar(ins_vector[0]->Var())));
        } else {  // ShapeTensorList
          std::vector<framework::Variable*> variables;
          variables.reserve(ins_vector.size());
          for (const auto& var_base : ins_vector) {
            variables.push_back(var_base->MutableVar());
          }
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVarList(variables)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
427 428 429
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
      if (attrs.find(attr_names[i]) != attrs.end() ||
          default_attrs.find(attr_names[i]) !=
              default_attrs.end()) {  // scalar is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext in dygraph.",
              attr_names[i]));
        }
      } else {  // scalar is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        kernel_ctx->EmplaceBackAttr(std::move(
            experimental::MakePtenScalarFromVar(ins_vector[0]->Var())));
451
      }
452

453 454
    } else {
      // TODO(chenweihang): support other attrs later
455
      auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
456
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
457
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
458
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
459
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
460
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
461
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
462
      } else if (attr_defs[i].type_index ==
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        kernel_ctx->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          kernel_ctx->EmplaceBackAttr(vector_int64_attr);
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr
479 480
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
481
            "Unsupported cast op attribute `%s` when construct "
482 483 484 485 486 487 488
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    }
  }
}

489 490 491
template <typename VarType>
static void PreparedOpRunImpl(
    const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
492
    const framework::OpKernelType& kernel_type,
493
    const framework::OperatorWithKernel::OpKernelFunc& func,
494
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
495 496
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs) {
J
Jiabin Yang 已提交
497 498
  // TODO(zjl): remove scope in dygraph
  framework::Scope scope;
H
hong 已提交
499

500 501
  DygraphInferShapeContext<VarType> infer_shape_ctx(
      &ins, &outs, &attrs, &default_attrs, op.Type(), &kernel_type);
502
  op.Info().infer_shape_(&infer_shape_ctx);
H
hong 已提交
503

504
  func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
505
                                        attrs, default_attrs));
506

507 508 509 510 511
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

L
Leo Chen 已提交
512 513 514 515 516 517 518 519
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
535
}
H
hong 已提交
536

537 538 539
template <typename VarType>
static void PreparedOpRunPtImpl(
    const framework::OperatorBase& op,
540
    const framework::OpKernelType& kernel_type,
541
    const framework::KernelSignature& pt_kernel_signature,
542 543 544
    const pten::Kernel& pt_kernel, platform::DeviceContext* dev_ctx,
    const NameVarMap<VarType>& ins, const NameVarMap<VarType>& outs,
    const framework::AttributeMap& attrs,
545
    const framework::AttributeMap& default_attrs) {
546 547
  DygraphInferShapeContext<VarType> infer_shape_ctx(
      &ins, &outs, &attrs, &default_attrs, op.Type(), &kernel_type);
548
  op.Info().infer_shape_(&infer_shape_ctx);
549

550 551
  PreparePtenData<VarType>(pt_kernel, pt_kernel_signature, ins);

552
  pten::KernelContext pt_kernel_context;
553 554
  BuildDygraphPtenKernelContext<VarType>(pt_kernel_signature, pt_kernel, ins,
                                         outs, attrs, default_attrs, dev_ctx,
555
                                         &pt_kernel_context);
556

557
  pt_kernel(&pt_kernel_context);
558

559 560
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
561 562
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
563 564 565 566
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

567
  // TODO(chenweihang): add debug flags later
568 569 570
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
571 572
}

573 574
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
                     const NameVarMap<VarBase>& outs,
575 576
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
577
  if (run_pten_kernel_) {
578
    PreparedOpRunPtImpl<VarBase>(op_, kernel_type_, pt_kernel_signature_,
579 580
                                 pt_kernel_, dev_ctx_, ins, outs, attrs,
                                 default_attrs);
581 582 583 584
  } else {
    PreparedOpRunImpl<VarBase>(op_, ctx_, kernel_type_, func_, dev_ctx_, ins,
                               outs, attrs, default_attrs);
  }
585
}
H
hong 已提交
586

587 588
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
                     const NameVarMap<VariableWrapper>& outs,
589 590
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
591
  if (run_pten_kernel_) {
592
    PreparedOpRunPtImpl<VariableWrapper>(
593 594
        op_, kernel_type_, pt_kernel_signature_, pt_kernel_, dev_ctx_, ins,
        outs, attrs, default_attrs);
595 596 597 598
  } else {
    PreparedOpRunImpl<VariableWrapper>(op_, ctx_, kernel_type_, func_, dev_ctx_,
                                       ins, outs, attrs, default_attrs);
  }
J
Jiabin Yang 已提交
599 600 601 602
}

}  // namespace imperative
}  // namespace paddle