nn.py 116.2 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20 21
from ..layers import nn
from .. import dygraph_utils
M
minqiyang 已提交
22
from . import layers
23
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator
M
minqiyang 已提交
24
from ..param_attr import ParamAttr
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
26 27
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
L
lujun 已提交
28
import numpy as np
29
import numbers
30
import logging
31

32
__all__ = [
33 34 35
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
36
]
M
minqiyang 已提交
37 38


X
Xin Pan 已提交
39
class Conv2D(layers.Layer):
40
    """
41 42
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
43 44 45
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
46 47 48
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
49
    and W is the width of the filter. If the groups is greater than 1,
50
    C will equal the number of input feature map divided by the groups.
51
    Please refer to UFLDL's `convolution
52
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
53 54 55 56 57 58 59 60 61
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

62
        Out = \\sigma (W \\ast X + b)
63 64 65

    Where:

66 67
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
68
    * :math:`\\ast`: Convolution operation.
69
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

92
    Parameters:
93
        num_channels(int): The number of channels in the input image.
94
        num_filters(int): The number of filter. It is as same as the output
95 96
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
97 98
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
99
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
100
            contain two integers, (stride_H, stride_W). Otherwise, the
101 102
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
103
            contain two integers, (padding_H, padding_W). Otherwise, the
104 105
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
106
            contain two integers, (dilation_H, dilation_W). Otherwise, the
107 108
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
109 110 111
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
112 113
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
114 115 116 117
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
118
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
119 120 121 122
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
123 124 125 126 127
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
128

129 130 131 132
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
133

134 135 136
    Returns:
        None
    
137
    Raises:
138
        ValueError: if ``use_cudnn`` is not a bool value.
139 140 141

    Examples:
        .. code-block:: python
L
lujun 已提交
142

143 144 145 146 147
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

148
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
149
          with fluid.dygraph.guard():
150
              conv2d = Conv2D(3, 2, 3)
151 152
              data = to_variable(data)
              conv = conv2d(data)
153 154 155

    """

M
minqiyang 已提交
156
    def __init__(self,
157
                 num_channels,
M
minqiyang 已提交
158 159 160 161 162 163 164 165
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
166 167 168
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
169
        assert param_attr is not False, "param_attr should not be False here."
170 171
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
172 173 174 175
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
176
        self._act = act
M
minqiyang 已提交
177 178 179
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
180 181 182 183 184
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
185

186 187 188 189 190
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
191

192
        self._num_channels = num_channels
193 194
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
195
        else:
196
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
197
                raise ValueError("num_channels must be divisible by groups.")
198 199
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
200
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
201 202

        def _get_default_param_initializer():
203 204
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
205 206 207
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

208
        self.weight = self.create_parameter(
209
            attr=self._param_attr,
M
minqiyang 已提交
210 211 212 213
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

214
        self.bias = self.create_parameter(
215 216
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
217 218
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
219 220

    def forward(self, input):
221 222
        inputs = {
            'Input': [input],
223
            'Filter': [self.weight],
224 225 226 227 228 229 230 231 232 233
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }

234
        if in_dygraph_mode() and self._l_type == 'conv2d':
235 236 237
            outs = core.ops.conv2d(inputs, attrs)
            pre_bias = outs['Output'][0]

238 239
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
240 241 242 243

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

M
minqiyang 已提交
244 245 246
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
247 248 249 250
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
251
                'Filter': self.weight,
M
minqiyang 已提交
252
            },
M
minqiyang 已提交
253
            outputs={"Output": pre_bias},
254
            attrs=attrs)
M
minqiyang 已提交
255

256
        if self.bias is not None:
257 258 259 260 261
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
262
                        'Y': [self.bias]},
263 264 265 266
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
267

L
lujun 已提交
268
        # Currently, we don't support inplace in dygraph mode
269
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
270 271


L
lujun 已提交
272
class Conv3D(layers.Layer):
273 274 275 276 277
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
278 279
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
280 281 282 283 284 285 286 287 288 289 290 291 292 293
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
294
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

320
    Parameters:
321
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
322
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
323
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
324
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
325 326 327
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
328
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
329 330
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
331
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
332 333
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
334
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
335 336
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
337 338 339
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
340 341
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
342 343 344
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
345 346
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
347 348 349
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
350 351 352 353 354
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
355
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
356

D
DuYao 已提交
357 358 359 360
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
361

362
    Returns:
D
DuYao 已提交
363
        None.
364 365 366 367 368 369 370 371

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

372 373 374 375 376 377
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
378
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
379 380
              ret = conv3d(fluid.dygraph.base.to_variable(data))

381 382
    """

L
lujun 已提交
383
    def __init__(self,
384
                 num_channels,
L
lujun 已提交
385 386 387 388 389 390 391 392 393
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
394 395
                 act=None,
                 dtype='float32'):
L
lujun 已提交
396
        assert param_attr is not False, "param_attr should not be False here."
397 398
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
399 400 401
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
402
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
403 404
        self._act = act
        self._use_cudnn = use_cudnn
405 406 407 408
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
409
        self._dtype = dtype
410 411

        if self._groups is None:
412
            num_filter_channels = self._num_channels
L
lujun 已提交
413
        else:
414
            if self._num_channels % self._groups != 0:
L
lujun 已提交
415
                raise ValueError("num_channels must be divisible by groups.")
416
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
417

418 419
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
420 421 422

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
423
                2] * self._num_channels
L
lujun 已提交
424 425 426
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

427
        self.weight = self.create_parameter(
428
            attr=self._param_attr,
L
lujun 已提交
429 430 431 432
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

433
        self.bias = self.create_parameter(
434 435
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
436 437 438 439 440 441 442 443
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
444
            type='conv3d',
L
lujun 已提交
445 446
            inputs={
                'Input': input,
447
                'Filter': self.weight,
L
lujun 已提交
448 449 450 451 452 453 454 455 456 457 458
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

459
        if self.bias is not None:
460 461 462 463 464
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
465
                        'Y': [self.bias]},
466 467 468 469
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
470 471 472 473 474

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
540

541
    Parameters:
542
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
543 544
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
545
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
546
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
547
            Otherwise, the filter will be a square.
D
DuYao 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
563
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
564 565
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
566 567 568 569
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
570 571
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
572 573
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
574 575
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
576 577 578
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
579 580 581 582 583 584 585
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
586

D
DuYao 已提交
587 588 589 590
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
591

L
lujun 已提交
592
    Returns:
D
DuYao 已提交
593
        None.
L
lujun 已提交
594 595 596 597 598 599 600 601

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

602 603 604 605 606 607
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
608
                    num_channels=3,
609 610 611 612 613
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
614 615
    """

L
lujun 已提交
616
    def __init__(self,
617
                 num_channels,
L
lujun 已提交
618
                 num_filters,
619
                 filter_size,
L
lujun 已提交
620 621 622 623 624 625 626 627
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
628 629
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
630 631 632 633 634 635 636
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
637
        self._num_channels = num_channels
L
lujun 已提交
638 639 640 641 642 643
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
644
        self._dtype = dtype
L
lujun 已提交
645

646 647
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
648

649 650
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
651
        self.weight = self.create_parameter(
L
lujun 已提交
652 653
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
654
            self.bias = self.create_parameter(
L
lujun 已提交
655 656 657 658 659 660 661 662 663 664 665
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
666
                    'Filter': [self.weight]},
L
lujun 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
682
                        'Y': [self.bias]},
L
lujun 已提交
683 684 685 686 687 688 689 690 691
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
692
class Pool2D(layers.Layer):
693
    """
694 695 696 697 698
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
699 700
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
701

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

746
    Parameters:
747
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
748
            it must contain two integers, (pool_size_Height, pool_size_Width).
749 750 751 752
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
753
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
754 755 756
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
757
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
758 759 760 761 762 763 764
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
765 766

    Returns:
767
        None
768 769 770 771 772 773 774 775 776 777

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
778
          import paddle.fluid as fluid
779 780
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
781 782

          with fluid.dygraph.guard():
783
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
784
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
785 786 787
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
788
             pool2d_res = pool2d(to_variable(data))
789 790 791

    """

M
minqiyang 已提交
792 793 794 795 796 797 798 799
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
800
                 exclusive=True):
M
minqiyang 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

814
        super(Pool2D, self).__init__()
M
minqiyang 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

        if in_dygraph_mode():
            outs = core.ops.pool2d(inputs, attrs)
            return outs['Out'][0]

M
minqiyang 已提交
845 846
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
847 848 849
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
850
            outputs={"Out": pool_out},
851
            attrs=attrs)
M
minqiyang 已提交
852
        return pool_out
M
minqiyang 已提交
853 854


S
songyouwei 已提交
855 856 857 858 859 860 861 862 863 864
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

865
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
        attrs = {
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}

        if in_dygraph_mode():
            outs = core.ops.matmul(inputs, attrs)
            pre_bias = outs['Out'][0]

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

S
songyouwei 已提交
942 943
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
944
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
959
class BatchNorm(layers.Layer):
960
    """
961 962 963 964 965
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
966 967 968 969
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

970 971 972
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
973 974 975 976 977 978 979 980

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

981 982
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
983 984 985

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
986 987 988 989 990 991
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
992

993 994
    The normalization function formula is as follows:
 
995 996 997
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
998 999 1000 1001 1002 1003
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1004

1005
    Parameters:
1006 1007 1008 1009 1010 1011
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1012 1013 1014
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1015
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1016 1017 1018
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1019 1020 1021 1022 1023 1024
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1025 1026
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1027
        use_global_stats(bool, optional): Whether to use global mean and
1028 1029 1030
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1031 1032 1033 1034
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1035 1036

    Returns:
1037
        None
1038 1039 1040

    Examples:
        .. code-block:: python
L
lujun 已提交
1041 1042

          import paddle.fluid as fluid
1043 1044
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1045

1046
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1047
          with fluid.dygraph.guard():
1048
              x = to_variable(x)
1049
              batch_norm = fluid.BatchNorm(10)
1050
              hidden1 = batch_norm(x)
1051 1052
    """

M
minqiyang 已提交
1053 1054 1055 1056 1057 1058 1059 1060
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1061
                 dtype='float32',
M
minqiyang 已提交
1062 1063 1064 1065
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1066
                 do_model_average_for_mean_and_var=True,
1067 1068
                 use_global_stats=False,
                 trainable_statistics=False):
1069
        super(BatchNorm, self).__init__()
1070
        self._param_attr = param_attr
1071
        self._bias_attr = bias_attr
1072
        self._act = act
M
minqiyang 已提交
1073 1074 1075

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1076 1077
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1078 1079 1080 1081 1082 1083
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1084
        self.weight = self.create_parameter(
1085
            attr=self._param_attr,
M
minqiyang 已提交
1086 1087 1088
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1089
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1090

1091
        self.bias = self.create_parameter(
1092
            attr=self._bias_attr,
M
minqiyang 已提交
1093 1094 1095
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1096
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1097

1098
        self._mean = self.create_parameter(
M
minqiyang 已提交
1099 1100 1101 1102 1103 1104 1105
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1106
        self._mean.stop_gradient = True
M
minqiyang 已提交
1107

1108
        self._variance = self.create_parameter(
M
minqiyang 已提交
1109 1110 1111 1112 1113 1114 1115
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1116
        self._variance.stop_gradient = True
M
minqiyang 已提交
1117 1118

        self._in_place = in_place
1119
        self._data_layout = data_layout
M
minqiyang 已提交
1120 1121 1122
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1123
        self._fuse_with_relu = False
M
minqiyang 已提交
1124
        self._use_global_stats = use_global_stats
1125
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1126 1127 1128 1129 1130 1131

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
1132

M
minqiyang 已提交
1133
        variance_out = self._variance
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics
        }
M
minqiyang 已提交
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

        if in_dygraph_mode():
            attrs['is_test'] = not _dygraph_tracer()._train_mode
            saved_mean = _varbase_creator(dtype=self._dtype)
            saved_variance = _varbase_creator(dtype=self._dtype)
            batch_norm_out = _varbase_creator(dtype=self._dtype)
            batch_norm_out.stop_gradient = False
            # inplace is not supported currently
        else:
            saved_mean = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            saved_variance = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
                self._dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        if in_dygraph_mode():
            outs = core.ops.batch_norm(inputs, attrs, outputs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)
M
minqiyang 已提交
1180 1181

        self._helper.append_op(
1182
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1183

L
lujun 已提交
1184
        # Currently, we don't support inplace in dygraph mode
1185
        return self._helper.append_activation(batch_norm_out, self._act)
1186 1187


1188 1189 1190 1191
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1192 1193 1194 1195 1196 1197
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1198 1199
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1200

1201
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1202 1203 1204 1205 1206 1207 1208
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1209 1210
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1224

1225
    Parameters:
L
lujun 已提交
1226 1227
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1250

Z
zhongpu 已提交
1251 1252
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1253

1254
    Returns:
Z
zhongpu 已提交
1255
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1256 1257

    Examples:
1258

1259 1260
        .. code-block:: python

L
lujun 已提交
1261 1262 1263 1264
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1265
          # example 1
1266 1267
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1268 1269
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1270
              emb = fluid.dygraph.Embedding(
1271 1272 1273
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1274
              static_rlt3 = emb(base.to_variable(inp_word))
1275
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1290 1291
    """

1292 1293 1294 1295 1296 1297 1298
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1299
        super(Embedding, self).__init__()
1300 1301 1302 1303
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1304
            size[0] + padding_idx)
1305 1306 1307

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1308
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1309 1310 1311
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1312
        self.weight = self.create_parameter(
1313 1314 1315 1316 1317 1318
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1319 1320 1321 1322 1323 1324
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1325

1326
        if in_dygraph_mode():
1327
            inputs = {'Ids': [input], 'W': [self.weight]}
1328 1329 1330
            outs = core.ops.lookup_table_v2(inputs, attrs)
            return outs['Out'][0]

1331 1332
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1333
            type='lookup_table_v2',
1334
            inputs={'Ids': input,
1335
                    'W': self.weight},
1336
            outputs={'Out': out},
1337
            attrs=attrs)
1338 1339

        return out
M
minqiyang 已提交
1340 1341


1342
class LayerNorm(layers.Layer):
1343
    """
1344 1345 1346
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1347
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1348

1349
    The formula is as follows:
1350

1351
    ..  math::
1352

1353
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1354

1355
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1356

1357
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1358

1359 1360 1361 1362 1363
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1364

1365
    Parameters:
1366 1367 1368 1369
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1370
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1371
            normalization. Default: True.
1372
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1373
            normalization. Default: True.
1374
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1375
            division by zero. Default: 1e-05.
1376
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1377 1378 1379
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1380
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1381
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1382 1383 1384
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1385
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1386
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1387
                  Default: None.
1388 1389
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1390
    Returns:
1391
        None
1392

1393
    Examples:
1394

1395 1396 1397
        .. code-block:: python

          import paddle.fluid as fluid
1398
          from paddle.fluid.dygraph.base import to_variable
1399 1400
          import numpy

1401
          x = numpy.random.random((3, 32, 32)).astype('float32')
1402
          with fluid.dygraph.guard():
1403
              x = to_variable(x)
1404
              layerNorm = fluid.LayerNorm([32, 32])
1405
              ret = layerNorm(x)
1406

1407
    """
1408

1409
    def __init__(self,
1410
                 normalized_shape,
1411 1412 1413 1414 1415
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1416 1417 1418 1419 1420
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1421

1422
        self._normalized_shape = list(normalized_shape)
1423 1424 1425 1426 1427 1428
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1429 1430
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1431
        if self._scale:
1432
            self.weight = self.create_parameter(
1433 1434 1435 1436
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1437 1438 1439 1440
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1441 1442
        if self._shift:
            assert self._bias_attr is not False
1443
            self.bias = self.create_parameter(
1444 1445 1446 1447
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1448 1449 1450
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1451 1452

    def forward(self, input):
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1464
        inputs = dict()
1465
        inputs['X'] = [input]
1466
        if self._scale:
1467
            inputs['Scale'] = [self.weight]
1468
        if self._shift:
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
            inputs['Bias'] = [self.bias]

        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

        if in_dygraph_mode():
            outs = core.ops.layer_norm(inputs, attrs)
            pre_act = outs['Y'][0]
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1503
        return self._helper.append_activation(layer_norm_out, act=self._act)
1504 1505


M
minqiyang 已提交
1506 1507 1508
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1509 1510 1511 1512 1513
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1524
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1550
    Parameters:
L
lujun 已提交
1551
        size (int): The input dimension value.
D
DuYao 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1561 1562 1563 1564


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1565 1566 1567 1568
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1569 1570 1571 1572 1573
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1574
            is initialized zero. The default value is None.
L
lujun 已提交
1575
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1576
                             The default value is 'tanh'.
L
lujun 已提交
1577
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1578 1579 1580
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1581

D
DuYao 已提交
1582 1583 1584 1585
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1586

M
minqiyang 已提交
1587
    Returns:
D
DuYao 已提交
1588 1589 1590 1591
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1605
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1606 1607 1608
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1609
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1610 1611 1612
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1623
        super(GRUUnit, self).__init__()
1624
        self._bias_attr = bias_attr
M
minqiyang 已提交
1625 1626 1627 1628 1629
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1630 1631
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1632

M
minqiyang 已提交
1633
        self._dtype = dtype
M
minqiyang 已提交
1634 1635
        size = size // 3
        # create weight
1636
        self.weight = self.create_parameter(
M
minqiyang 已提交
1637
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1638 1639

        # create bias
M
minqiyang 已提交
1640
        bias_size = [1, 3 * size]
1641
        self._bias_size = bias_size
1642
        self.bias = self.create_parameter(
M
minqiyang 已提交
1643
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1644

M
minqiyang 已提交
1645
    def forward(self, input, hidden):
1646 1647 1648 1649 1650
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1651
        if self.bias:
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
            inputs['Bias'] = [self.bias]
        attrs = {
            'activation': self.activation,
            'gate_activation': self.gate_activation,
        }

        if in_dygraph_mode():
            outs = core.ops.gru_unit(inputs, attrs)
            return outs['Hidden'][0], outs['ResetHiddenPrev'][0], outs['Gate'][
                0]
M
minqiyang 已提交
1662 1663 1664 1665 1666 1667

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1677 1678
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1679 1680 1681
            })

        return updated_hidden, reset_hidden_pre, gate
1682 1683 1684 1685


class NCE(layers.Layer):
    """
1686 1687 1688 1689 1690
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1691
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1692

1693
    Parameters:
1694 1695
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1696
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1697 1698 1699
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1700
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1701 1702 1703 1704
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1705 1706
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
        sampler (str, optional): The sampler used to sample class from negtive classes.
1707 1708
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1709
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1710
                       It is used when sampler is set to 'custom_dist'.
1711
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1712
                       Default: None.
1713 1714
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1715
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1716

1717 1718
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1719

1720 1721
        **bias** (Parameter or None): the learnable bias of this layer.
    
1722
    Returns:
1723
        None
1724 1725 1726 1727

    Examples:
        .. code-block:: python

1728 1729 1730
            import numpy as np
            import paddle.fluid as fluid

1731
            window_size = 5
1732 1733
            dict_size = 20
            label_word = int(window_size // 2) + 1
1734
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1756
                nce = fluid.NCE(
1757
                             num_total_classes=dict_size,
1758
                             dim=embs3.shape[1],
1759 1760 1761 1762 1763 1764 1765
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1766 1767
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1768 1769 1770 1771 1772

    """

    def __init__(self,
                 num_total_classes,
1773
                 dim,
1774
                 sample_weight=None,
1775 1776 1777 1778 1779 1780
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1781 1782 1783
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1784 1785 1786
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1787
        self._dtype = dtype
1788
        self._inputs = dict()
1789
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

1877
        self.weight = self.create_parameter(
1878 1879 1880
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
1881
            dtype=self._dtype)
1882
        if self._bias_attr:
1883
            self.bias = self.create_parameter(
1884 1885 1886
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
1887
                dtype=self._dtype)
1888 1889
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
1920 1921 1922 1923
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

1924 1925 1926 1927 1928
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

1929
    Parameters:
L
lujun 已提交
1930
        mode (str): The mode for weight sharing. It supports all, channel
1931 1932 1933
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
1934 1935 1936
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
1937
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
1938 1939
          This argument is required when mode is "element".
          Default: None.
1940 1941
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
1942
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1943

1944 1945 1946
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
1947
    Returns:
1948
        None
1949 1950 1951 1952 1953

    Examples:

        .. code-block:: python

L
lujun 已提交
1954
          import paddle.fluid as fluid
1955
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
1956 1957 1958 1959
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
1960
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
1972
                 input_shape=inp_np.shape,
L
lujun 已提交
1973
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
1974
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
1975

1976 1977
    """

S
songyouwei 已提交
1978 1979 1980 1981 1982
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
1983
                 dtype='float32'):
1984 1985
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
1986 1987
        self._mode = mode
        self._param_attr = param_attr
1988
        self._dtype = dtype
S
songyouwei 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2003
        self.weight = self.create_parameter(
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2015
                    'Alpha': self.weight},
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2036
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2037

2038
    Parameters:
2039 2040 2041 2042 2043
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2044 2045 2046 2047
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2048
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2049
           If it is set to None, the bias is initialized zero. The default value is None.
2050
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2051

D
DuYao 已提交
2052 2053 2054 2055
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2056

2057 2058 2059 2060 2061 2062
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2063 2064 2065 2066 2067 2068 2069
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2070
                    input1_dim=5, input2_dim=4, output_dim=1000)
2071 2072
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2073 2074 2075
    """

    def __init__(self,
2076 2077 2078
                 input1_dim,
                 input2_dim,
                 output_dim,
2079 2080 2081
                 name=None,
                 act=None,
                 param_attr=None,
2082 2083 2084
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2085 2086 2087 2088
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2089 2090 2091
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2092
        self._inputs = dict()
2093
        self._dtype = dtype
2094

2095
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2096
        self.weight = self.create_parameter(
2097 2098 2099 2100
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2101
        bias_size = [1, self._output_dim]
2102
        self.bias = self.create_parameter(
2103 2104 2105 2106
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2107 2108

    def forward(self, x, y):
2109 2110 2111
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
        if self.bias:
            self._inputs["Bias"] = self.bias
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2126
        return self._helper.append_activation(out, act=self._act)
2127 2128 2129 2130


class Conv2DTranspose(layers.Layer):
    """
2131 2132
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2133
    The convolution2D transpose layer calculates the output based on the input,
2134 2135 2136
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2137 2138
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2139 2140
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2141 2142 2143
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2144 2145
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2146 2147 2148 2149 2150 2151 2152 2153 2154

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2155 2156
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2157
    * :math:`\\ast`: Convolution operation.
2158
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2183
    Parameters:
2184
        num_channels(int): The number of channels in the input image.
2185
        num_filters(int): The number of the filter. It is as same as the output
2186
            feature map.
2187 2188 2189
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2190
        output_size(int or tuple, optional): The output image size. If output size is a
2191 2192 2193
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2194
            should follow the formula above. Default: None.
2195
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2196
            contain two integers, (padding_H, padding_W). Otherwise, the
2197 2198
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2199
            contain two integers, (stride_H, stride_W). Otherwise, the
2200 2201
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2202
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2203 2204
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2205 2206 2207 2208
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2209 2210
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2211 2212 2213
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2214
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2215 2216 2217 2218
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2219
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2220
            library is installed. Default: True.
2221
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2222
            Default: None.
2223
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2224

2225 2226
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2227

2228
        **bias** (Parameter or None): the learnable bias of this layer.
2229

2230 2231
    Returns:
        None
2232 2233 2234 2235

    Examples:
       .. code-block:: python

2236
          import paddle.fluid as fluid
2237
          import numpy as np
2238 2239

          with fluid.dygraph.guard():
2240
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2241
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2242
                    num_channels=32, num_filters=2, filter_size=3)
2243 2244
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2245 2246 2247
    """

    def __init__(self,
2248
                 num_channels,
2249
                 num_filters,
2250
                 filter_size,
2251 2252 2253 2254 2255 2256 2257 2258
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2259 2260 2261
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2262 2263 2264
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2265
        self._act = act
2266
        self._groups = groups
2267
        self._num_channels = num_channels
2268 2269 2270 2271 2272 2273 2274
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2275
        self._dtype = dtype
2276

2277 2278 2279
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2280
            self._op_type = 'depthwise_conv2d_transpose'
2281 2282
        else:
            self._op_type = 'conv2d_transpose'
2283 2284 2285 2286 2287

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2288 2289
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2301
        filter_shape = [self._num_channels, self._num_filters // self._groups
2302 2303
                        ] + self._filter_size

2304
        self.weight = self.create_parameter(
2305
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2306

2307
        self.bias = self.create_parameter(
2308 2309 2310 2311 2312
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2313
    def forward(self, input):
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            outs = op(inputs, attrs)
            pre_bias = outs['Output'][0]
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2333 2334 2335 2336
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2337
            inputs=inputs,
2338
            outputs={'Output': pre_bias},
2339
            attrs=attrs)
2340

2341
        if self.bias is not None:
2342 2343 2344 2345 2346
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2347
                        'Y': [self.bias]},
2348 2349 2350 2351 2352 2353
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2354 2355 2356 2357 2358 2359 2360 2361 2362
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2363
    Parameters:
L
lujun 已提交
2364
        name_scope(str): The name of this class.
2365
        num_filters (int): number of filters.
L
lujun 已提交
2366 2367 2368
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2381 2382 2383 2384
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2398
        assert not in_dygraph_mode(
2399
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2400 2401 2402 2403 2404 2405 2406
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2407
        self._act = act
2408

2409
    def _build_once(self, input):
2410 2411
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2412
        self.weight = self.create_parameter(
2413
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2414

2415
        self.bias = self.create_parameter(
2416 2417 2418 2419 2420
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2421 2422 2423 2424 2425 2426
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2427
                'Filter': [self.weight],
2428 2429 2430 2431 2432 2433 2434
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2435

2436
        if self.bias is not None:
2437 2438 2439 2440 2441
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2442
                        'Y': [self.bias]},
2443 2444 2445 2446 2447 2448
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2449 2450 2451


class RowConv(layers.Layer):
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2470
    Parameters:
L
lujun 已提交
2471
        name_scope(str): The name of this class.
2472 2473 2474
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2475 2476
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2477

2478 2479 2480
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2481
    Returns:
L
lujun 已提交
2482 2483
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2499 2500 2501 2502 2503
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2504
        assert not in_dygraph_mode(
2505
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2506 2507 2508 2509 2510
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2511
    def _build_once(self, input):
L
lujun 已提交
2512 2513
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2514
        self.weight = self.create_parameter(
2515 2516 2517 2518
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2519 2520 2521 2522 2523 2524

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2525
                    'Filter': [self.weight]},
L
lujun 已提交
2526 2527 2528 2529 2530 2531
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2532 2533 2534 2535 2536 2537
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2538
        channels(int): The number of channels of input.
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2562
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2563
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2564 2565 2566 2567

    """

    def __init__(self,
2568
                 channels,
L
lujun 已提交
2569 2570 2571 2572 2573
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2574 2575 2576
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2577 2578 2579
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2580
        self._channels = channels
L
lujun 已提交
2581 2582
        self._groups = groups
        self._act = act
2583
        self._dtype = dtype
L
lujun 已提交
2584 2585 2586
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2587
        param_shape = [self._channels]
L
lujun 已提交
2588

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2600 2601 2602

    def forward(self, input):
        inputs = {'X': input}
2603 2604 2605 2606
        if self.bias:
            inputs['Bias'] = self.bias
        if self.weight:
            inputs['Scale'] = self.weight
L
lujun 已提交
2607 2608

        # create output
2609
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2631
    """
2632 2633
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2665
    Parameters:
2666
        weight_shape(list or tuple): The shape of weight parameter.
2667 2668 2669 2670
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2671
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2672 2673

    Returns:
2674
        None
2675 2676 2677 2678 2679

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2680
            import numpy as np
2681 2682

            with fluid.dygraph.guard():
2683 2684 2685
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2686 2687 2688

    """

2689 2690 2691 2692 2693 2694 2695
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2696 2697 2698
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2699
        self._dtype = dtype
L
lujun 已提交
2700

2701 2702 2703
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2704

2705
        self.weight_u = self.create_parameter(
L
lujun 已提交
2706 2707 2708 2709
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2710
        self.weight_u.stop_gradient = True
L
lujun 已提交
2711

2712
        self.weight_v = self.create_parameter(
L
lujun 已提交
2713 2714 2715 2716
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2717
        self.weight_v.stop_gradient = True
L
lujun 已提交
2718 2719

    def forward(self, weight):
2720
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2736
    """
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2747
        feature_size(int): last dimension of nodes_vector.
2748 2749 2750 2751 2752 2753 2754
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2755
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2756

2757 2758
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2759

2760
        **bias** (Parameter or None): the learnable bias of this layer.
2761

2762 2763
    Returns:
        None
L
lujun 已提交
2764

2765
    Examples:
L
lujun 已提交
2766

2767
        .. code-block:: python
2768

2769 2770
          import paddle.fluid as fluid
          import numpy
2771

2772 2773 2774 2775
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2776
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2777
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2778 2779
    """

L
lujun 已提交
2780
    def __init__(self,
2781
                 feature_size,
L
lujun 已提交
2782 2783 2784 2785 2786 2787
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2788 2789 2790
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2791
        self._name = name
2792
        self._feature_size = feature_size
L
lujun 已提交
2793 2794 2795 2796 2797 2798
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2799 2800
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2801
        if self._bias_attr:
2802
            self.bias = self.create_parameter(
L
lujun 已提交
2803 2804 2805 2806
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
2807
        self.weight = self.create_parameter(
L
lujun 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
2825
                'Filter': self.weight
L
lujun 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
2835
                        'Y': [self.bias]},
L
lujun 已提交
2836 2837 2838 2839 2840
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)