pooling.cc 35.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14
#include "paddle/fluid/operators/math/pooling.h"
C
chengduo 已提交
15 16
#include <algorithm>
#include <vector>
17 18 19 20 21

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
22 23 24 25 26
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
27
template <typename PoolProcess, typename T>
Q
QI JUN 已提交
28
class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
29
 public:
Q
QI JUN 已提交
30
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
31
                  const framework::Tensor& input, const std::vector<int>& ksize,
32 33
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
D
dengkaipeng 已提交
34
                  bool exclusive, bool adaptive, framework::Tensor* output) {
35 36 37
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
38 39 40
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
41 42 43 44 45 46 47 48 49 50 51
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
52
    T* output_data = output->mutable_data<T>(context.GetPlace());
53

54 55
    int hstart, hend;
    int wstart, wend;
56 57 58
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
59
          if (adaptive) {
D
dengkaipeng 已提交
60 61
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
62
          } else {
63 64
            hstart = ph * stride_height - padding_height;
            hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
65 66
            hstart = std::max(hstart, 0);
          }
67
          for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
68
            if (adaptive) {
D
dengkaipeng 已提交
69 70
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
71
            } else {
72 73
              wstart = pw * stride_width - padding_width;
              wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
74 75
              wstart = std::max(wstart, 0);
            }
76 77

            T ele = pool_process.initial();
78 79
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
C
chengduo 已提交
80
                pool_process.compute(input_data[h * input_width + w], &ele);
81 82
              }
            }
D
dengkaipeng 已提交
83 84 85
            int pool_size = (exclusive || adaptive)
                                ? (hend - hstart) * (wend - wstart)
                                : ksize_height * ksize_width;
C
chengduo 已提交
86
            pool_process.finalize(static_cast<T>(pool_size), &ele);
87 88 89 90 91 92 93 94 95 96
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
97 98 99 100 101
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent height
* and width, respectively.
*/
102
template <typename PoolProcess, class T>
Q
QI JUN 已提交
103
class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
104
 public:
C
chengduo 已提交
105 106 107 108 109
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, PoolProcess pool_grad_process,
D
dengkaipeng 已提交
110
      bool exclusive, bool adaptive, framework::Tensor* input_grad) {
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
129
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
130

131 132
    int hstart, hend;
    int wstart, wend;
133 134 135
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
136
          if (adaptive) {
D
dengkaipeng 已提交
137 138
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
139
          } else {
140 141
            hstart = ph * stride_height - padding_height;
            hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
142 143
            hstart = std::max(hstart, 0);
          }
144
          for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
145
            if (adaptive) {
D
dengkaipeng 已提交
146 147
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
148
            } else {
149 150
              wstart = pw * stride_width - padding_width;
              wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
151 152 153 154 155
              wstart = std::max(wstart, 0);
            }
            int pool_size = (exclusive || adaptive)
                                ? (hend - hstart) * (wend - wstart)
                                : ksize_height * ksize_width;
156
            float scale = 1.0 / pool_size;
157 158
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
159 160 161 162
                pool_grad_process.compute(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
C
chengduo 已提交
163 164
                    static_cast<T>(scale),
                    input_grad_data + h * input_width + w);
165 166 167 168 169 170 171 172 173 174 175 176 177
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
178 179 180 181 182
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
183
template <class T>
Q
QI JUN 已提交
184
class MaxPool2dGradFunctor<platform::CPUDeviceContext, T> {
185
 public:
C
chengduo 已提交
186 187 188 189 190
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, framework::Tensor* input_grad) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
209
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
244 245
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
246

Q
QI JUN 已提交
247
template class Pool2dFunctor<platform::CPUDeviceContext,
248
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
249
template class Pool2dFunctor<platform::CPUDeviceContext,
250
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
251 252 253 254 255 256 257
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool2dFunctor<platform::CPUDeviceContext,
258
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
259
template class Pool2dFunctor<platform::CPUDeviceContext,
260
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
261 262 263 264 265 266
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
267

C
chengduoZH 已提交
268 269 270 271 272
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
273
template <typename PoolProcess, class T>
Q
QI JUN 已提交
274
class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
275
 public:
Q
QI JUN 已提交
276
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
277
                  const framework::Tensor& input, const std::vector<int>& ksize,
278 279
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
D
dengkaipeng 已提交
280
                  bool exclusive, bool adaptive, framework::Tensor* output) {
281 282 283 284
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
285 286 287 288
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
289 290 291 292 293 294 295 296 297 298 299 300 301 302
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
303
    T* output_data = output->mutable_data<T>(context.GetPlace());
304

305 306 307
    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
308 309 310
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
311
          if (adaptive) {
D
dengkaipeng 已提交
312 313
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
D
dengkaipeng 已提交
314
          } else {
315 316
            dstart = pd * stride_depth - padding_depth;
            dend = std::min(dstart + ksize_depth, input_depth);
D
dengkaipeng 已提交
317 318
            dstart = std::max(dstart, 0);
          }
319
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
320
            if (adaptive) {
D
dengkaipeng 已提交
321 322
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
323
            } else {
324 325
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
326 327
              hstart = std::max(hstart, 0);
            }
328
            for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
329
              if (adaptive) {
D
dengkaipeng 已提交
330 331
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
332
              } else {
333 334
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
335 336
                wstart = std::max(wstart, 0);
              }
337
              int output_idx = (pd * output_height + ph) * output_width + pw;
338
              T ele = pool_process.initial();
339 340 341
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
342
                    pool_process.compute(
C
chengduo 已提交
343 344
                        input_data[(d * input_height + h) * input_width + w],
                        &ele);
345 346 347
                  }
                }
              }
348
              int pool_size =
D
dengkaipeng 已提交
349
                  (exclusive || adaptive)
350 351
                      ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                      : ksize_depth * ksize_height * ksize_width;
C
chengduo 已提交
352
              pool_process.finalize(static_cast<T>(pool_size), &ele);
353 354 355 356 357 358 359 360 361 362 363
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
364 365 366 367 368
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
369
template <typename PoolProcess, class T>
Q
QI JUN 已提交
370
class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
371
 public:
C
chengduo 已提交
372 373 374 375 376
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, PoolProcess pool_grad_process,
D
dengkaipeng 已提交
377
      bool exclusive, bool adaptive, framework::Tensor* input_grad) {
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
401
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
402

403 404 405
    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
406 407 408
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
409
          if (adaptive) {
D
dengkaipeng 已提交
410 411
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
D
dengkaipeng 已提交
412
          } else {
413 414
            dstart = pd * stride_depth - padding_depth;
            dend = std::min(dstart + ksize_depth, input_depth);
D
dengkaipeng 已提交
415 416
            dstart = std::max(dstart, 0);
          }
417
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
418
            if (adaptive) {
D
dengkaipeng 已提交
419 420
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
421
            } else {
422 423
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
424 425
              hstart = std::max(hstart, 0);
            }
426
            for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
427
              if (adaptive) {
D
dengkaipeng 已提交
428 429
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
430
              } else {
431 432
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
433 434
                wstart = std::max(wstart, 0);
              }
435

436
              int pool_size =
D
dengkaipeng 已提交
437
                  (exclusive || adaptive)
438 439
                      ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                      : ksize_depth * ksize_height * ksize_width;
440
              float scale = 1.0 / pool_size;
441 442 443 444 445 446
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
447
                    pool_grad_process.compute(
448
                        input_data[input_idx], output_data[output_idx],
C
chengduo 已提交
449 450
                        output_grad_data[output_idx], static_cast<T>(scale),
                        input_grad_data + input_idx);
451 452 453 454 455 456
                  }
                }
              }
            }
          }
        }
457 458 459 460
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
461 462 463 464 465
      }
    }
  }
};

C
chengduoZH 已提交
466 467 468 469 470
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
471
template <class T>
Q
QI JUN 已提交
472
class MaxPool3dGradFunctor<platform::CPUDeviceContext, T> {
473
 public:
C
chengduo 已提交
474 475 476 477 478
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, framework::Tensor* input_grad) {
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
502
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
546 547
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
548

Q
QI JUN 已提交
549
template class Pool3dFunctor<platform::CPUDeviceContext,
550
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
551
template class Pool3dFunctor<platform::CPUDeviceContext,
552
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
553 554 555 556 557 558 559
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool3dFunctor<platform::CPUDeviceContext,
560
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
561
template class Pool3dFunctor<platform::CPUDeviceContext,
562
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
563 564 565 566 567 568
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
C
chengduoZH 已提交
569

C
chengduoZH 已提交
570 571 572 573 574
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
575
template <typename T1, typename T2>
Q
QI JUN 已提交
576
class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
577
 public:
Q
QI JUN 已提交
578
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
579 580
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
D
dengkaipeng 已提交
581 582
                  const std::vector<int>& paddings, bool adaptive,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
583 584 585
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
586 587 588
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
589 590 591 592 593 594 595 596 597
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
598 599 600
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
601

602 603
    int hstart, hend;
    int wstart, wend;
C
chengduoZH 已提交
604 605 606
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
607
          if (adaptive) {
D
dengkaipeng 已提交
608 609
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
610
          } else {
611 612
            hstart = ph * stride_height - padding_height;
            hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
613 614
            hstart = std::max(hstart, 0);
          }
C
chengduoZH 已提交
615
          for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
616
            if (adaptive) {
D
dengkaipeng 已提交
617 618
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
619
            } else {
620 621
              wstart = pw * stride_width - padding_width;
              wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
622 623
              wstart = std::max(wstart, 0);
            }
C
chengduoZH 已提交
624

C
chengduoZH 已提交
625
            T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
            int index = -1;
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                if (ele < input_data[h * input_width + w]) {
                  ele = input_data[h * input_width + w];
                  index = h * input_width + w;
                }
              }
            }
            output_data[ph * output_width + pw] = ele;
            mask_data[ph * output_width + pw] = index;
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
648 649 650 651 652
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
653
template <typename T1, typename T2>
Q
QI JUN 已提交
654
class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
655
 public:
Q
QI JUN 已提交
656
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
657
                  const framework::Tensor& output_grad,
C
chengduo 已提交
658 659
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
660
                  const std::vector<int>& paddings, bool adaptive,
C
chengduoZH 已提交
661 662 663 664
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
665 666 667 668 669 670
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
671 672 673
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          for (int pw = 0; pw < output_width; ++pw) {
            const int output_idx = ph * output_width + pw;
            const int input_idx = static_cast<int>(mask_data[output_idx]);
            input_grad_data[input_idx] += output_grad_data[output_idx];
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
693 694 695 696 697 698 699 700
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
C
chengduoZH 已提交
701

C
chengduoZH 已提交
702 703 704 705 706
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
707
template <typename T1, typename T2>
Q
QI JUN 已提交
708
class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
709
 public:
Q
QI JUN 已提交
710
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
711 712
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
713 714
                  const std::vector<int>& paddings, bool adaptive,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
715 716 717 718
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
719 720 721 722
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
723 724 725 726 727 728 729 730 731 732 733 734
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
735 736 737
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
738

739 740 741
    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
C
chengduoZH 已提交
742 743 744
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
745
          if (adaptive) {
D
dengkaipeng 已提交
746 747
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
D
dengkaipeng 已提交
748
          } else {
749 750
            dstart = pd * stride_depth - padding_depth;
            dend = std::min(dstart + ksize_depth, input_depth);
D
dengkaipeng 已提交
751 752
            dstart = std::max(dstart, 0);
          }
C
chengduoZH 已提交
753
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
754
            if (adaptive) {
D
dengkaipeng 已提交
755 756
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
757
            } else {
758 759
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
760 761
              hstart = std::max(hstart, 0);
            }
C
chengduoZH 已提交
762
            for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
763
              if (adaptive) {
D
dengkaipeng 已提交
764 765
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
766
              } else {
767 768
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
769 770
                wstart = std::max(wstart, 0);
              }
C
chengduoZH 已提交
771 772

              int output_idx = (pd * output_height + ph) * output_width + pw;
C
chengduoZH 已提交
773
              T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
              int index = -1;
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    if (ele < input_data[input_idx]) {
                      index = input_idx;
                      ele = input_data[input_idx];
                    }
                  }
                }
              }
              output_data[output_idx] = ele;
              mask_data[output_idx] = index;
            }
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
800 801 802 803 804
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
805
template <typename T1, typename T2>
Q
QI JUN 已提交
806
class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
807
 public:
Q
QI JUN 已提交
808
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
809
                  const framework::Tensor& output_grad,
C
chengduo 已提交
810 811
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
812
                  const std::vector<int>& paddings, bool adaptive,
C
chengduoZH 已提交
813 814 815 816 817
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
818 819 820 821 822 823 824
    const int output_channels = output_grad.dims()[1];
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
825 826 827
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          for (int ph = 0; ph < output_height; ++ph) {
            for (int pw = 0; pw < output_width; ++pw) {
              const int output_idx =
                  (pd * output_height + ph) * output_width + pw;
              const int input_idx = static_cast<int>(mask_data[output_idx]);
              input_grad_data[input_idx] += output_grad_data[output_idx];
            }
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
850 851 852 853 854 855 856 857
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
858 859 860
}  // namespace math
}  // namespace operators
}  // namespace paddle