pooling.cc 32.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14
#include "paddle/fluid/operators/math/pooling.h"
C
chengduo 已提交
15 16
#include <algorithm>
#include <vector>
17 18 19 20 21

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
22 23 24 25 26
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
27
template <typename PoolProcess, typename T>
Q
QI JUN 已提交
28
class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
29
 public:
Q
QI JUN 已提交
30
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
31
                  const framework::Tensor& input, const std::vector<int>& ksize,
32 33 34
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
                  bool exclusive, framework::Tensor* output) {
35 36 37
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
38 39 40
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
41 42 43 44 45 46 47 48 49 50 51
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
52
    T* output_data = output->mutable_data<T>(context.GetPlace());
53 54 55 56 57 58 59 60 61 62 63

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
64 65

            T ele = pool_process.initial();
66 67
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
C
chengduo 已提交
68
                pool_process.compute(input_data[h * input_width + w], &ele);
69 70
              }
            }
71
            int pool_size = exclusive ? (hend - hstart) * (wend - wstart)
72
                                      : ksize_height * ksize_width;
C
chengduo 已提交
73
            pool_process.finalize(static_cast<T>(pool_size), &ele);
74 75 76 77 78 79 80 81 82 83
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
84 85 86 87 88
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent height
* and width, respectively.
*/
89
template <typename PoolProcess, class T>
Q
QI JUN 已提交
90
class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
91
 public:
C
chengduo 已提交
92 93 94 95 96
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, PoolProcess pool_grad_process,
97
      bool exclusive, framework::Tensor* input_grad) {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
116
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
117 118 119 120 121 122 123 124 125 126 127

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
128
            int pool_size = exclusive ? (hend - hstart) * (wend - wstart)
129
                                      : ksize_height * ksize_width;
130
            float scale = 1.0 / pool_size;
131 132
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
133 134 135 136
                pool_grad_process.compute(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
C
chengduo 已提交
137 138
                    static_cast<T>(scale),
                    input_grad_data + h * input_width + w);
139 140 141 142 143 144 145 146 147 148 149 150 151
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
152 153 154 155 156
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
157
template <class T>
Q
QI JUN 已提交
158
class MaxPool2dGradFunctor<platform::CPUDeviceContext, T> {
159
 public:
C
chengduo 已提交
160 161 162 163 164
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, framework::Tensor* input_grad) {
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
183
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
218 219
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
220

Q
QI JUN 已提交
221
template class Pool2dFunctor<platform::CPUDeviceContext,
222
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
223
template class Pool2dFunctor<platform::CPUDeviceContext,
224
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
225 226 227 228 229 230 231
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool2dFunctor<platform::CPUDeviceContext,
232
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
233
template class Pool2dFunctor<platform::CPUDeviceContext,
234
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
235 236 237 238 239 240
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
241

C
chengduoZH 已提交
242 243 244 245 246
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
247
template <typename PoolProcess, class T>
Q
QI JUN 已提交
248
class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
249
 public:
Q
QI JUN 已提交
250
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
251
                  const framework::Tensor& input, const std::vector<int>& ksize,
252 253
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
254
                  bool exclusive, framework::Tensor* output) {
255 256 257 258
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
259 260 261 262
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
263 264 265 266 267 268 269 270 271 272 273 274 275 276
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
277
    T* output_data = output->mutable_data<T>(context.GetPlace());
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              int output_idx = (pd * output_height + ph) * output_width + pw;
294
              T ele = pool_process.initial();
295 296 297
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
298
                    pool_process.compute(
C
chengduo 已提交
299 300
                        input_data[(d * input_height + h) * input_width + w],
                        &ele);
301 302 303
                  }
                }
              }
304 305 306 307
              int pool_size =
                  exclusive
                      ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                      : ksize_depth * ksize_height * ksize_width;
C
chengduo 已提交
308
              pool_process.finalize(static_cast<T>(pool_size), &ele);
309 310 311 312 313 314 315 316 317 318 319
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
320 321 322 323 324
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
325
template <typename PoolProcess, class T>
Q
QI JUN 已提交
326
class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
327
 public:
C
chengduo 已提交
328 329 330 331 332
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, PoolProcess pool_grad_process,
333
      bool exclusive, framework::Tensor* input_grad) {
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
357
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);

            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

375 376 377 378
              int pool_size =
                  exclusive
                      ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                      : ksize_depth * ksize_height * ksize_width;
379
              float scale = 1.0 / pool_size;
380 381 382 383 384 385
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
386
                    pool_grad_process.compute(
387
                        input_data[input_idx], output_data[output_idx],
C
chengduo 已提交
388 389
                        output_grad_data[output_idx], static_cast<T>(scale),
                        input_grad_data + input_idx);
390 391 392 393 394 395
                  }
                }
              }
            }
          }
        }
396 397 398 399
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
400 401 402 403 404
      }
    }
  }
};

C
chengduoZH 已提交
405 406 407 408 409
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
410
template <class T>
Q
QI JUN 已提交
411
class MaxPool3dGradFunctor<platform::CPUDeviceContext, T> {
412
 public:
C
chengduo 已提交
413 414 415 416 417
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, framework::Tensor* input_grad) {
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
441
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
485 486
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
487

Q
QI JUN 已提交
488
template class Pool3dFunctor<platform::CPUDeviceContext,
489
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
490
template class Pool3dFunctor<platform::CPUDeviceContext,
491
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
492 493 494 495 496 497 498
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool3dFunctor<platform::CPUDeviceContext,
499
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
500
template class Pool3dFunctor<platform::CPUDeviceContext,
501
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
502 503 504 505 506 507
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
C
chengduoZH 已提交
508

C
chengduoZH 已提交
509 510 511 512 513
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
514
template <typename T1, typename T2>
Q
QI JUN 已提交
515
class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
516
 public:
Q
QI JUN 已提交
517
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
518 519 520 521
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, framework::Tensor* output,
                  framework::Tensor* mask) {
C
chengduoZH 已提交
522 523 524
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
525 526 527
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
528 529 530 531 532 533 534 535 536
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
537 538 539
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
540 541 542 543 544 545 546 547 548 549 550 551

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

C
chengduoZH 已提交
552
            T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
            int index = -1;
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                if (ele < input_data[h * input_width + w]) {
                  ele = input_data[h * input_width + w];
                  index = h * input_width + w;
                }
              }
            }
            output_data[ph * output_width + pw] = ele;
            mask_data[ph * output_width + pw] = index;
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
575 576 577 578 579
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
580
template <typename T1, typename T2>
Q
QI JUN 已提交
581
class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
582
 public:
Q
QI JUN 已提交
583
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
584
                  const framework::Tensor& output_grad,
C
chengduo 已提交
585 586 587
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
C
chengduoZH 已提交
588 589 590 591
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
592 593 594 595 596 597
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
598 599 600
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          for (int pw = 0; pw < output_width; ++pw) {
            const int output_idx = ph * output_width + pw;
            const int input_idx = static_cast<int>(mask_data[output_idx]);
            input_grad_data[input_idx] += output_grad_data[output_idx];
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
620 621 622 623 624 625 626 627
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
C
chengduoZH 已提交
628

C
chengduoZH 已提交
629 630 631 632 633
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
634
template <typename T1, typename T2>
Q
QI JUN 已提交
635
class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
636
 public:
Q
QI JUN 已提交
637
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
638 639 640 641
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, framework::Tensor* output,
                  framework::Tensor* mask) {
C
chengduoZH 已提交
642 643 644 645
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
646 647 648 649
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
650 651 652 653 654 655 656 657 658 659 660 661
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
662 663 664
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              int output_idx = (pd * output_height + ph) * output_width + pw;
C
chengduoZH 已提交
682
              T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
              int index = -1;
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    if (ele < input_data[input_idx]) {
                      index = input_idx;
                      ele = input_data[input_idx];
                    }
                  }
                }
              }
              output_data[output_idx] = ele;
              mask_data[output_idx] = index;
            }
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
709 710 711 712 713
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
714
template <typename T1, typename T2>
Q
QI JUN 已提交
715
class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
716
 public:
Q
QI JUN 已提交
717
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
718
                  const framework::Tensor& output_grad,
C
chengduo 已提交
719 720 721
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
C
chengduoZH 已提交
722 723 724 725 726
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
727 728 729 730 731 732 733
    const int output_channels = output_grad.dims()[1];
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
734 735 736
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          for (int ph = 0; ph < output_height; ++ph) {
            for (int pw = 0; pw < output_width; ++pw) {
              const int output_idx =
                  (pd * output_height + ph) * output_width + pw;
              const int input_idx = static_cast<int>(mask_data[output_idx]);
              input_grad_data[input_idx] += output_grad_data[output_idx];
            }
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
759 760 761 762 763 764 765 766
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
767 768 769
}  // namespace math
}  // namespace operators
}  // namespace paddle