pooling.cc 32.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14
#include "paddle/fluid/operators/math/pooling.h"
C
chengduo 已提交
15 16
#include <algorithm>
#include <vector>
17 18 19 20 21

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
22 23 24 25 26
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
27
template <typename PoolProcess, typename T>
Q
QI JUN 已提交
28
class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
29
 public:
Q
QI JUN 已提交
30
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
31
                  const framework::Tensor& input, const std::vector<int>& ksize,
32 33
                  const std::vector<int>& strides, const std::vector<int>& paddings, 
                  PoolProcess pool_process, bool exclusive,
C
chengduo 已提交
34
                  framework::Tensor* output) {
35 36 37
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
38 39 40
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
41 42 43 44 45 46 47 48 49 50 51
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
52
    T* output_data = output->mutable_data<T>(context.GetPlace());
53 54 55 56 57 58 59 60 61 62 63

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
64 65

            T ele = pool_process.initial();
66 67
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
C
chengduo 已提交
68
                pool_process.compute(input_data[h * input_width + w], &ele);
69 70
              }
            }
71 72
            int pool_size = exclusive ? (hend - hstart) * (wend - wstart)
                            : ksize_height * ksize_width;
C
chengduo 已提交
73
            pool_process.finalize(static_cast<T>(pool_size), &ele);
74 75 76 77 78 79 80 81 82 83
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
84 85 86 87 88
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent height
* and width, respectively.
*/
89
template <typename PoolProcess, class T>
Q
QI JUN 已提交
90
class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
91
 public:
C
chengduo 已提交
92 93 94 95 96
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, PoolProcess pool_grad_process,
97
      bool exclusive, framework::Tensor* input_grad) {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
116
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
117 118 119 120 121 122 123 124 125 126 127

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
128 129
            int pool_size = exclusive ? (hend - hstart) * (wend - wstart)
                            : ksize_height * ksize_width;
130
            float scale = 1.0 / pool_size;
131 132
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
133 134 135 136
                pool_grad_process.compute(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
C
chengduo 已提交
137 138
                    static_cast<T>(scale),
                    input_grad_data + h * input_width + w);
139 140 141 142 143 144 145 146 147 148 149 150 151
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
152 153 154 155 156
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
157
template <class T>
Q
QI JUN 已提交
158
class MaxPool2dGradFunctor<platform::CPUDeviceContext, T> {
159
 public:
C
chengduo 已提交
160 161 162 163 164
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, framework::Tensor* input_grad) {
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
183
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
218 219
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
220

Q
QI JUN 已提交
221
template class Pool2dFunctor<platform::CPUDeviceContext,
222
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
223
template class Pool2dFunctor<platform::CPUDeviceContext,
224
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
225 226 227 228 229 230 231
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool2dFunctor<platform::CPUDeviceContext,
232
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
233
template class Pool2dFunctor<platform::CPUDeviceContext,
234
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
235 236 237 238 239 240
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
241

C
chengduoZH 已提交
242 243 244 245 246
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
247
template <typename PoolProcess, class T>
Q
QI JUN 已提交
248
class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
249
 public:
Q
QI JUN 已提交
250
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
251
                  const framework::Tensor& input, const std::vector<int>& ksize,
252 253 254
                  const std::vector<int>& strides, const std::vector<int>& paddings, 
                  PoolProcess pool_process,
                  bool exclusive, framework::Tensor* output) {
255 256 257 258
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
259 260 261 262
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
263 264 265 266 267 268 269 270 271 272 273 274 275 276
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
277
    T* output_data = output->mutable_data<T>(context.GetPlace());
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              int output_idx = (pd * output_height + ph) * output_width + pw;
294
              T ele = pool_process.initial();
295 296 297
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
298
                    pool_process.compute(
C
chengduo 已提交
299 300
                        input_data[(d * input_height + h) * input_width + w],
                        &ele);
301 302 303
                  }
                }
              }
304 305 306
              int pool_size = exclusive ? 
                  (dend - dstart) * (hend - hstart) * (wend - wstart)
                  : ksize_depth * ksize_height * ksize_width;
C
chengduo 已提交
307
              pool_process.finalize(static_cast<T>(pool_size), &ele);
308 309 310 311 312 313 314 315 316 317 318
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
319 320 321 322 323
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
324
template <typename PoolProcess, class T>
Q
QI JUN 已提交
325
class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
326
 public:
C
chengduo 已提交
327 328 329 330 331
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, PoolProcess pool_grad_process,
332
      bool exclusive, framework::Tensor* input_grad) {
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
356
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);

            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

374 375 376
              int pool_size = exclusive ?
                  (dend - dstart) * (hend - hstart) * (wend - wstart)
                  : ksize_depth * ksize_height * ksize_width;
377
              float scale = 1.0 / pool_size;
378 379 380 381 382 383
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
384
                    pool_grad_process.compute(
385
                        input_data[input_idx], output_data[output_idx],
C
chengduo 已提交
386 387
                        output_grad_data[output_idx], static_cast<T>(scale),
                        input_grad_data + input_idx);
388 389 390 391 392 393
                  }
                }
              }
            }
          }
        }
394 395 396 397
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
398 399 400 401 402
      }
    }
  }
};

C
chengduoZH 已提交
403 404 405 406 407
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
408
template <class T>
Q
QI JUN 已提交
409
class MaxPool3dGradFunctor<platform::CPUDeviceContext, T> {
410
 public:
C
chengduo 已提交
411 412 413 414 415
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, framework::Tensor* input_grad) {
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
439
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
483 484
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
485

Q
QI JUN 已提交
486
template class Pool3dFunctor<platform::CPUDeviceContext,
487
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
488
template class Pool3dFunctor<platform::CPUDeviceContext,
489
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
490 491 492 493 494 495 496
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool3dFunctor<platform::CPUDeviceContext,
497
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
498
template class Pool3dFunctor<platform::CPUDeviceContext,
499
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
500 501 502 503 504 505
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
C
chengduoZH 已提交
506

C
chengduoZH 已提交
507 508 509 510 511
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
512
template <typename T1, typename T2>
Q
QI JUN 已提交
513
class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
514
 public:
Q
QI JUN 已提交
515
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
516 517 518 519
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, framework::Tensor* output,
                  framework::Tensor* mask) {
C
chengduoZH 已提交
520 521 522
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
523 524 525
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
526 527 528 529 530 531 532 533 534
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
535 536 537
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
538 539 540 541 542 543 544 545 546 547 548 549

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

C
chengduoZH 已提交
550
            T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
            int index = -1;
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                if (ele < input_data[h * input_width + w]) {
                  ele = input_data[h * input_width + w];
                  index = h * input_width + w;
                }
              }
            }
            output_data[ph * output_width + pw] = ele;
            mask_data[ph * output_width + pw] = index;
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
573 574 575 576 577
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
578
template <typename T1, typename T2>
Q
QI JUN 已提交
579
class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
580
 public:
Q
QI JUN 已提交
581
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
582
                  const framework::Tensor& output_grad,
C
chengduo 已提交
583 584 585
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
C
chengduoZH 已提交
586 587 588 589
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
590 591 592 593 594 595
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
596 597 598
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          for (int pw = 0; pw < output_width; ++pw) {
            const int output_idx = ph * output_width + pw;
            const int input_idx = static_cast<int>(mask_data[output_idx]);
            input_grad_data[input_idx] += output_grad_data[output_idx];
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
618 619 620 621 622 623 624 625
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
C
chengduoZH 已提交
626

C
chengduoZH 已提交
627 628 629 630 631
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
632
template <typename T1, typename T2>
Q
QI JUN 已提交
633
class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
634
 public:
Q
QI JUN 已提交
635
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
636 637 638 639
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, framework::Tensor* output,
                  framework::Tensor* mask) {
C
chengduoZH 已提交
640 641 642 643
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
644 645 646 647
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
648 649 650 651 652 653 654 655 656 657 658 659
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
660 661 662
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              int output_idx = (pd * output_height + ph) * output_width + pw;
C
chengduoZH 已提交
680
              T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
              int index = -1;
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    if (ele < input_data[input_idx]) {
                      index = input_idx;
                      ele = input_data[input_idx];
                    }
                  }
                }
              }
              output_data[output_idx] = ele;
              mask_data[output_idx] = index;
            }
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
707 708 709 710 711
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
712
template <typename T1, typename T2>
Q
QI JUN 已提交
713
class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
714
 public:
Q
QI JUN 已提交
715
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
716
                  const framework::Tensor& output_grad,
C
chengduo 已提交
717 718 719
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
C
chengduoZH 已提交
720 721 722 723 724
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
725 726 727 728 729 730 731
    const int output_channels = output_grad.dims()[1];
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
732 733 734
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          for (int ph = 0; ph < output_height; ++ph) {
            for (int pw = 0; pw < output_width; ++pw) {
              const int output_idx =
                  (pd * output_height + ph) * output_width + pw;
              const int input_idx = static_cast<int>(mask_data[output_idx]);
              input_grad_data[input_idx] += output_grad_data[output_idx];
            }
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
757 758 759 760 761 762 763 764
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
765 766 767
}  // namespace math
}  // namespace operators
}  // namespace paddle