distributed_py.cc 19.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/Types.h"
26
#include "paddle/fluid/distributed/collective/reducer.h"
27 28 29 30 31 32 33
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

34
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
35 36 37
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

38 39 40 41
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif

42 43 44 45 46
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#endif

47 48 49 50 51
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
#endif

52 53 54 55 56 57 58
namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

59 60 61 62 63
std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
    py::handle py_tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
64 65
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters) {
66
  auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
67 68 69 70 71 72
  return std::make_shared<distributed::EagerReducer>(params,
                                                     group_indices,
                                                     is_sparse_gradient,
                                                     process_group,
                                                     group_size_limits,
                                                     find_unused_parameters);
73 74
}

75 76 77 78 79 80 81 82
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
using GlooOptions = paddle::distributed::ProcessGroupGloo::GlooOptions;
#endif

static std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";  // NOLINT

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

B
Baibaifan 已提交
101 102 103 104
  py::class_<distributed::BarrierOptions>(*m, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("place_ids", &distributed::BarrierOptions::place_ids);

105 106 107 108 109
  py::class_<distributed::ReduceOptions>(*m, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::ReduceOptions::reduce_op)
      .def_readwrite("source_root", &distributed::ReduceOptions::root_rank);

110 111 112 113 114 115
  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
116 117
          .def(
              "allreduce",
118 119
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
120 121 122 123 124 125 126 127 128
                 distributed::ReduceOp op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors, tensors, opts);
              },
129 130
              py::arg("tensor"),
              py::arg("op") = distributed::ReduceOp::SUM,
131 132 133 134
              py::call_guard<py::gil_scoped_release>())

          .def(
              "broadcast",
135 136
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
137 138 139 140 141 142 143 144 145
                 int source_rank) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::BroadcastOptions opts;
                opts.source_rank = source_rank;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Broadcast(tensors, tensors, opts);
              },
146 147
              py::arg("tensor"),
              py::arg("source_rank"),
148 149 150 151 152 153 154 155 156 157 158 159 160 161
              py::call_guard<py::gil_scoped_release>())

          .def(
              "barrier",
              [](distributed::ProcessGroup &self, std::vector<int> place_ids) {
                distributed::BarrierOptions opts;
                opts.place_ids = place_ids;
                return self.Barrier(opts);
              },
              py::arg("place_ids") = std::vector<int>{},
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send",
162 163
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
164 165 166 167 168 169 170
                 int dst) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors, dst);
              },
171 172
              py::arg("tensor"),
              py::arg("dst"),
173 174 175 176
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv",
177 178
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
179 180 181 182 183 184 185
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors, src);
              },
186 187
              py::arg("tensor"),
              py::arg("src"),
188 189 190 191
              py::call_guard<py::gil_scoped_release>())

          .def(
              "all_gather",
192 193
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
194 195 196 197 198 199 200 201 202 203 204
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllGather(in_tensors, out_tensors);
              },
205 206
              py::arg("in"),
              py::arg("out"),
207 208 209 210
              py::call_guard<py::gil_scoped_release>())

          .def(
              "alltoall",
211 212
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
213 214 215 216 217 218 219 220 221 222 223
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll(in_tensors, out_tensors);
              },
224 225
              py::arg("in"),
              py::arg("out"),
226 227
              py::call_guard<py::gil_scoped_release>())

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
          .def(
              "alltoall_single",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 std::vector<int64_t> in_sizes,
                 std::vector<int64_t> out_sizes) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll_Single(
                    in_tensors, out_tensors, in_sizes, out_sizes);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("in_sizes"),
              py::arg("out_sizes"),
              py::call_guard<py::gil_scoped_release>())

252 253
          .def(
              "reduce",
254 255 256 257
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 int dst,
                 distributed::ReduceOp op) {
258 259 260 261 262 263 264 265 266
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts;
                opts.reduce_op = op;
                opts.root_rank = dst;
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors, tensors, opts);
              },
267 268
              py::arg("tensor"),
              py::arg("dst"),
269 270 271 272
              py::arg("op") = distributed::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "scatter",
273 274 275 276
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int src) {
277 278 279 280 281 282 283 284 285 286 287 288
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ScatterOptions opts;
                opts.root_rank = src;
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.Scatter(in_tensors, out_tensors, opts);
              },
289 290 291
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_reduce_scatter_base",
              [](distributed::ProcessGroup &self,
                 py::handle py_out_tensor,
                 py::handle py_in_tensor,
                 distributed::ReduceOp op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ReduceScatterOptions opts;
                opts.reduce_op = op;
                auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                auto dense_in = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                return self._ReduceScatterBase(*dense_out, *dense_in, opts);
              },
              py::arg("out_tensor"),
              py::arg("in_tensor"),
              py::arg("op") = distributed::ReduceOp::SUM,
312
              py::call_guard<py::gil_scoped_release>());
313

314
#if defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  auto processGroupNCCL =
      py::class_<distributed::ProcessGroupNCCL,
                 std::shared_ptr<distributed::ProcessGroupNCCL>>(
          *m, "ProcessGroupNCCL", ProcessGroup)
          .def(py::init<const std::shared_ptr<distributed::Store> &,
                        int,
                        int,
                        const platform::CUDAPlace &,
                        int>(),
               py::arg("store"),
               py::arg("rank"),
               py::arg("world_size"),
               py::arg("place"),
               py::arg("group_id") = 0,
               py::call_guard<py::gil_scoped_release>());

  processGroupNCCL.def_static(
      "group_start", []() { distributed::ProcessGroupNCCL::GroupStart(); });
  processGroupNCCL.def_static(
      "group_end", []() { distributed::ProcessGroupNCCL::GroupEnd(); });

336
#endif
337 338 339 340 341 342

#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
  py::class_<distributed::ProcessGroupHeter,
             std::shared_ptr<distributed::ProcessGroupHeter>>(
      *m, "ProcessGroupHeter", ProcessGroup)
343 344 345
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
346 347 348 349 350
#if defined(PADDLE_WITH_ASCEND_CL)
                    const platform::NPUPlace &,
#else
                    const platform::CUDAPlace &,
#endif
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                    int,
                    int,
                    int,
                    int,
                    int,
                    bool,
                    std::string,
                    int,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("gid") = 0,
           py::arg("local_rank") = 0,
           py::arg("local_size") = 1,
           py::arg("gloo_rank") = 0,
           py::arg("gloo_size") = 1,
           py::arg("with_switch") = false,
           py::arg("switch_endpoint") = "",
           py::arg("src_rank") = "",
           py::arg("dst_rank") = "",
           py::call_guard<py::gil_scoped_release>());
374
#endif
375

376 377 378 379
#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<distributed::ProcessGroupHCCL,
             std::shared_ptr<distributed::ProcessGroupHCCL>>(
      *m, "ProcessGroupHCCL", ProcessGroup)
380 381 382 383 384 385 386 387 388 389
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
                    const platform::NPUPlace &,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
390
           py::call_guard<py::gil_scoped_release>());
391

392 393
#endif

394 395 396
  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
397 398
      .def("wait",
           &distributed::ProcessGroup::Task::Wait,
399 400
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
401 402
      .def("synchronize",
           &distributed::ProcessGroup::Task::Synchronize,
403 404
           py::call_guard<py::gil_scoped_release>());

405 406 407
#if defined(PADDLE_WITH_GLOO)
  py::class_<ProcessGroupGloo, std::shared_ptr<ProcessGroupGloo>>(
      *m, "ProcessGroupGloo", ProcessGroup)
408 409 410 411 412
      .def(py::init<const std::shared_ptr<paddle::distributed::Store> &,
                    int,
                    int,
                    const platform::CPUPlace &,
                    int,
413
                    std::shared_ptr<GlooOptions> &>(),
414
           py::call_guard<py::gil_scoped_release>())
415
      .def(py::init([](const std::shared_ptr<paddle::distributed::Store> &store,
416 417 418 419
                       int rank,
                       int world_size,
                       const platform::CPUPlace &place,
                       int gid) {
420 421 422 423 424 425 426 427
             auto opts = GlooOptions::create();
             char *ifname = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
             if (ifname && strlen(ifname) > 1) {
               opts->device = ProcessGroupGloo::createDeviceForInterface(
                   std::string(ifname));
             } else {
               opts->device = ProcessGroupGloo::createDefaultDevice();
             }
428 429
             return std::make_shared<ProcessGroupGloo>(
                 store, rank, world_size, place, gid, opts);
430
           }),
431 432 433 434 435
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
436
           py::call_guard<py::gil_scoped_release>())
437 438 439 440
      .def_static("create_default_device",
                  &ProcessGroupGloo::createDefaultDevice);
#endif

441 442
  m->def(
      "eager_assign_group_by_size",
443 444
      [](py::handle py_tensors,
         std::vector<bool> is_sparse_gradient,
445 446 447 448 449 450
         std::vector<size_t> group_size_limits,
         std::vector<int64_t> tensor_indices) {
        auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
        return distributed::Eager_AssignGroupBySize(
            tensors, is_sparse_gradient, group_size_limits, tensor_indices);
      },
451 452
      py::arg("tensors"),
      py::arg("is_sparse_gradient"),
453 454 455
      py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
      py::arg("tensor_indices") = std::vector<int64_t>{},
      py::call_guard<py::gil_scoped_release>());
456 457

  py::class_<distributed::EagerReducer,
458 459
             std::shared_ptr<distributed::EagerReducer>>(
      *m, "EagerReducer", R"DOC()DOC")
460
      .def(py::init(&CreateEagerReducer))
461 462 463 464 465 466
      .def(
          "prepare_for_backward",
          [](distributed::EagerReducer &self, py::handle py_tensors) {
            auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
            self.PrepareForBackward(params);
          },
467 468
          py::arg("tensors"),
          py::call_guard<py::gil_scoped_release>());
469 470 471 472
}

}  // end namespace pybind
}  // namespace paddle