distributed_py.cc 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/Types.h"
26
#include "paddle/fluid/distributed/collective/reducer.h"
27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

38 39 40 41
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif

42 43 44 45 46
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#endif

47 48 49 50 51
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
#endif

52 53 54 55 56 57 58
namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

59 60 61 62 63 64 65 66 67 68 69 70
std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
    py::handle py_tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
    const std::vector<size_t> &group_size_limits, bool find_unused_parameters) {
  auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
  return std::make_shared<distributed::EagerReducer>(
      params, group_indices, is_sparse_gradient, process_group,
      group_size_limits, find_unused_parameters);
}

71 72 73 74 75 76 77 78
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
using GlooOptions = paddle::distributed::ProcessGroupGloo::GlooOptions;
#endif

static std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";  // NOLINT

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

B
Baibaifan 已提交
97 98 99 100
  py::class_<distributed::BarrierOptions>(*m, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("place_ids", &distributed::BarrierOptions::place_ids);

101 102 103 104 105
  py::class_<distributed::ReduceOptions>(*m, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::ReduceOptions::reduce_op)
      .def_readwrite("source_root", &distributed::ReduceOptions::root_rank);

106 107 108 109 110 111
  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
          .def(
              "allreduce",
              [](distributed::ProcessGroup &self, py::handle py_tensor,
                 distributed::ReduceOp op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors, tensors, opts);
              },
              py::arg("tensor"), py::arg("op") = distributed::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())

          .def(
              "broadcast",
              [](distributed::ProcessGroup &self, py::handle py_tensor,
                 int source_rank) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::BroadcastOptions opts;
                opts.source_rank = source_rank;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Broadcast(tensors, tensors, opts);
              },
              py::arg("tensor"), py::arg("source_rank"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "barrier",
              [](distributed::ProcessGroup &self, std::vector<int> place_ids) {
                distributed::BarrierOptions opts;
                opts.place_ids = place_ids;
                return self.Barrier(opts);
              },
              py::arg("place_ids") = std::vector<int>{},
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send",
              [](distributed::ProcessGroup &self, py::handle py_tensor,
                 int dst) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors, dst);
              },
              py::arg("tensor"), py::arg("dst"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv",
              [](distributed::ProcessGroup &self, py::handle py_tensor,
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors, src);
              },
              py::arg("tensor"), py::arg("src"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "all_gather",
              [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllGather(in_tensors, out_tensors);
              },
              py::arg("in"), py::arg("out"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "alltoall",
              [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll(in_tensors, out_tensors);
              },
              py::arg("in"), py::arg("out"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce",
              [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                 int dst, distributed::ReduceOp op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts;
                opts.reduce_op = op;
                opts.root_rank = dst;
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors, tensors, opts);
              },
              py::arg("tensor"), py::arg("dst"),
              py::arg("op") = distributed::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())

          .def(
              "scatter",
              [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                 py::handle py_out_tensor, int src) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ScatterOptions opts;
                opts.root_rank = src;
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.Scatter(in_tensors, out_tensors, opts);
              },
              py::arg("in"), py::arg("out"), py::arg("src"),
              py::call_guard<py::gil_scoped_release>());
247 248 249 250 251

#if defined(PADDLE_WITH_NCCL)
  py::class_<distributed::ProcessGroupNCCL,
             std::shared_ptr<distributed::ProcessGroupNCCL>>(
      *m, "ProcessGroupNCCL", ProcessGroup)
L
lilong12 已提交
252
      .def(py::init<const std::shared_ptr<distributed::Store> &, int, int,
253
                    const platform::CUDAPlace &, int>(),
L
lilong12 已提交
254
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
255 256 257
           py::arg("place"), py::arg("group_id") = 0,
           py::call_guard<py::gil_scoped_release>());
#endif
258 259 260 261 262 263

#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
  py::class_<distributed::ProcessGroupHeter,
             std::shared_ptr<distributed::ProcessGroupHeter>>(
      *m, "ProcessGroupHeter", ProcessGroup)
264 265 266 267 268 269
      .def(py::init<const std::shared_ptr<distributed::Store> &, int, int,
#if defined(PADDLE_WITH_ASCEND_CL)
                    const platform::NPUPlace &,
#else
                    const platform::CUDAPlace &,
#endif
270
                    int, int, int, int, int, bool, std::string, int, int>(),
271
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
272
           py::arg("place"), py::arg("gid") = 0, py::arg("local_rank") = 0,
273 274
           py::arg("local_size") = 1, py::arg("gloo_rank") = 0,
           py::arg("gloo_size") = 1, py::arg("with_switch") = false,
275 276
           py::arg("switch_endpoint") = "", py::arg("src_rank") = "",
           py::arg("dst_rank") = "", py::call_guard<py::gil_scoped_release>());
277
#endif
278

279 280 281 282
#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<distributed::ProcessGroupHCCL,
             std::shared_ptr<distributed::ProcessGroupHCCL>>(
      *m, "ProcessGroupHCCL", ProcessGroup)
L
lilong12 已提交
283
      .def(py::init<const std::shared_ptr<distributed::Store> &, int, int,
284
                    const platform::NPUPlace &, int>(),
285
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
286
           py::arg("place"), py::arg("group_id") = 0,
287
           py::call_guard<py::gil_scoped_release>());
288

289 290
#endif

291 292 293 294 295 296 297 298 299
  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
      .def("wait", &distributed::ProcessGroup::Task::Wait,
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
      .def("synchronize", &distributed::ProcessGroup::Task::Synchronize,
           py::call_guard<py::gil_scoped_release>());

300 301 302
#if defined(PADDLE_WITH_GLOO)
  py::class_<ProcessGroupGloo, std::shared_ptr<ProcessGroupGloo>>(
      *m, "ProcessGroupGloo", ProcessGroup)
303
      .def(py::init<const std::shared_ptr<paddle::distributed::Store> &, int,
304 305
                    int, const platform::CPUPlace &, int,
                    std::shared_ptr<GlooOptions> &>(),
306
           py::call_guard<py::gil_scoped_release>())
307
      .def(py::init([](const std::shared_ptr<paddle::distributed::Store> &store,
308 309
                       int rank, int world_size,
                       const platform::CPUPlace &place, int gid) {
310 311 312 313 314 315 316 317 318
             auto opts = GlooOptions::create();
             char *ifname = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
             if (ifname && strlen(ifname) > 1) {
               opts->device = ProcessGroupGloo::createDeviceForInterface(
                   std::string(ifname));
             } else {
               opts->device = ProcessGroupGloo::createDefaultDevice();
             }
             return std::make_shared<ProcessGroupGloo>(store, rank, world_size,
319
                                                       place, gid, opts);
320
           }),
321
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
322 323
           py::arg("place"), py::arg("group_id") = 0,
           py::call_guard<py::gil_scoped_release>())
324 325 326 327
      .def_static("create_default_device",
                  &ProcessGroupGloo::createDefaultDevice);
#endif

328 329 330 331 332 333 334 335 336 337 338 339 340
  m->def(
      "eager_assign_group_by_size",
      [](py::handle py_tensors, std::vector<bool> is_sparse_gradient,
         std::vector<size_t> group_size_limits,
         std::vector<int64_t> tensor_indices) {
        auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
        return distributed::Eager_AssignGroupBySize(
            tensors, is_sparse_gradient, group_size_limits, tensor_indices);
      },
      py::arg("tensors"), py::arg("is_sparse_gradient"),
      py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
      py::arg("tensor_indices") = std::vector<int64_t>{},
      py::call_guard<py::gil_scoped_release>());
341 342 343 344 345

  py::class_<distributed::EagerReducer,
             std::shared_ptr<distributed::EagerReducer>>(*m, "EagerReducer",
                                                         R"DOC()DOC")
      .def(py::init(&CreateEagerReducer))
346 347 348 349 350 351 352
      .def(
          "prepare_for_backward",
          [](distributed::EagerReducer &self, py::handle py_tensors) {
            auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
            self.PrepareForBackward(params);
          },
          py::arg("tensors"), py::call_guard<py::gil_scoped_release>());
353 354 355 356
}

}  // end namespace pybind
}  // namespace paddle