distributed_py.cc 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/Types.h"
26
#include "paddle/fluid/distributed/collective/reducer.h"
27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

38 39 40 41
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif

42 43 44 45 46
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
#endif

47 48 49 50 51 52 53
namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

54 55 56 57 58 59 60 61
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
using GlooOptions = paddle::distributed::ProcessGroupGloo::GlooOptions;
#endif

static std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";  // NOLINT

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

B
Baibaifan 已提交
80 81 82 83
  py::class_<distributed::BarrierOptions>(*m, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("place_ids", &distributed::BarrierOptions::place_ids);

84 85 86 87 88
  py::class_<distributed::ReduceOptions>(*m, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::ReduceOptions::reduce_op)
      .def_readwrite("source_root", &distributed::ReduceOptions::root_rank);

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
          .def("allreduce",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  distributed::ReduceOp op) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 distributed::AllreduceOptions opts;
                 opts.reduce_op = op;
                 std::vector<Tensor> tensors = {tensor};
                 return self.AllReduce(tensors, opts);
               },
               py::arg("tensor"), py::arg("op") = distributed::ReduceOp::SUM,
               py::call_guard<py::gil_scoped_release>())

          .def("broadcast",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  int source_rank) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 distributed::BroadcastOptions opts;
                 opts.source_rank = source_rank;
                 std::vector<Tensor> tensors = {tensor};
                 return self.Broadcast(tensors, opts);
               },
               py::arg("tensor"), py::arg("source_rank"),
B
Baibaifan 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
               py::call_guard<py::gil_scoped_release>())

          .def("barrier",
               [](distributed::ProcessGroup &self, std::vector<int> place_ids) {
                 distributed::BarrierOptions opts;
                 opts.place_ids = place_ids;
                 return self.Barrier(opts);
               },
               py::arg("place_ids") = std::vector<int>{},
               py::call_guard<py::gil_scoped_release>())

          .def("send",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  int dst) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 std::vector<Tensor> tensors = {tensor};
                 return self.Send(tensors, dst);
               },
               py::arg("tensor"), py::arg("dst"),
               py::call_guard<py::gil_scoped_release>())

          .def("recv",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  int src) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 std::vector<Tensor> tensors = {tensor};
                 return self.Recv(tensors, src);
               },
               py::arg("tensor"), py::arg("src"),
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
               py::call_guard<py::gil_scoped_release>())

          .def("all_gather",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  py::handle py_out_tensor) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                 std::vector<Tensor> in_tensors = {in_tensor};
                 std::vector<Tensor> out_tensors = {out_tensor};
                 return self.AllGather(in_tensors, out_tensors);
               },
               py::arg("in"), py::arg("out"),
               py::call_guard<py::gil_scoped_release>())

          .def("alltoall",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  py::handle py_out_tensor) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                 std::vector<Tensor> in_tensors = {in_tensor};
                 std::vector<Tensor> out_tensors = {out_tensor};
                 return self.AllToAll(in_tensors, out_tensors);
               },
               py::arg("in"), py::arg("out"),
               py::call_guard<py::gil_scoped_release>())

          .def("reduce",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  int dst, distributed::ReduceOp op) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 distributed::ReduceOptions opts;
                 opts.reduce_op = op;
                 opts.root_rank = dst;
                 std::vector<Tensor> tensors = {in_tensor};
                 return self.Reduce(tensors, opts);
               },
               py::arg("tensor"), py::arg("dst"),
               py::arg("op") = distributed::ReduceOp::SUM,
               py::call_guard<py::gil_scoped_release>())

          .def("scatter",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  py::handle py_out_tensor, int src) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                 distributed::ScatterOptions opts;
                 opts.root_rank = src;
                 std::vector<Tensor> in_tensors = {in_tensor};
                 std::vector<Tensor> out_tensors = {out_tensor};
                 return self.Scatter(in_tensors, out_tensors, opts);
               },
               py::arg("in"), py::arg("out"), py::arg("src"),
198 199 200 201 202 203
               py::call_guard<py::gil_scoped_release>());

#if defined(PADDLE_WITH_NCCL)
  py::class_<distributed::ProcessGroupNCCL,
             std::shared_ptr<distributed::ProcessGroupNCCL>>(
      *m, "ProcessGroupNCCL", ProcessGroup)
204
      .def(py::init<const std::shared_ptr<distributed::Store> &, int, int>(),
205
           py::call_guard<py::gil_scoped_release>());
206
#endif
207

208 209 210 211 212 213 214 215
#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<distributed::ProcessGroupHCCL,
             std::shared_ptr<distributed::ProcessGroupHCCL>>(
      *m, "ProcessGroupHCCL", ProcessGroup)
      .def(py::init<const std::shared_ptr<distributed::Store> &, int, int>(),
           py::call_guard<py::gil_scoped_release>());
#endif

216 217 218 219 220 221 222 223 224
  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
      .def("wait", &distributed::ProcessGroup::Task::Wait,
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
      .def("synchronize", &distributed::ProcessGroup::Task::Synchronize,
           py::call_guard<py::gil_scoped_release>());

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
#if defined(PADDLE_WITH_GLOO)
  py::class_<GlooOptions>(*m, "GlooOptions")
      .def(py::init<>())
      .def_readwrite("_device", &GlooOptions::device)
      .def_static("create", &GlooOptions::create);

  py::class_<GlooStore, std::shared_ptr<GlooStore>>(*m, "GlooStore")
      .def(py::init(
               [](const std::shared_ptr<paddle::distributed::TCPStore> &store) {
                 return std::make_shared<GlooStore>(store);
               }),
           py::call_guard<py::gil_scoped_release>());

  py::class_<ProcessGroupGloo, std::shared_ptr<ProcessGroupGloo>>(
      *m, "ProcessGroupGloo", ProcessGroup)
      .def(py::init<const std::shared_ptr<GlooStore> &, int, int,
                    std::shared_ptr<GlooOptions> &>(),
           py::call_guard<py::gil_scoped_release>())
      .def(py::init([](const std::shared_ptr<GlooStore> &store, int rank,
                       int world_size) {
             auto opts = GlooOptions::create();
             char *ifname = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
             if (ifname && strlen(ifname) > 1) {
               opts->device = ProcessGroupGloo::createDeviceForInterface(
                   std::string(ifname));
             } else {
               opts->device = ProcessGroupGloo::createDefaultDevice();
             }
             return std::make_shared<ProcessGroupGloo>(store, rank, world_size,
                                                       opts);
           }),
256
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
257 258 259 260 261
           py::call_guard<py::gil_scoped_release>())
      .def_static("create_default_device",
                  &ProcessGroupGloo::createDefaultDevice);
#endif

262 263 264 265 266 267 268 269 270 271 272 273
  m->def("eager_assign_group_by_size",
         [](py::handle py_tensors, std::vector<bool> is_sparse_gradient,
            std::vector<size_t> group_size_limits,
            std::vector<int64_t> tensor_indices) {
           auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
           return distributed::Eager_AssignGroupBySize(
               tensors, is_sparse_gradient, group_size_limits, tensor_indices);
         },
         py::arg("tensors"), py::arg("is_sparse_gradient"),
         py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
         py::arg("tensor_indices") = std::vector<int64_t>{},
         py::call_guard<py::gil_scoped_release>());
274 275 276 277
}

}  // end namespace pybind
}  // namespace paddle