test_layers.py 62.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest

18 19 20 21 22 23
import contextlib
import numpy as np
import decorators

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
32 33
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
34 35 36 37 38 39 40 41 42 43 44


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

45 46 47 48 49 50 51 52
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
53 54 55 56 57 58 59 60

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

61
    def get_static_graph_result(self, feed, fetch_list, with_lod=False):
62 63 64 65
        exe = fluid.Executor(self._get_place())
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
66 67
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))
68 69

    @contextlib.contextmanager
70
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
71
        with fluid.dygraph.guard(
72
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
73 74 75 76 77 78
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield


class TestLayer(LayerTest):
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    def test_fc(self):
        # pdb.set_trace()
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            ret = layers.fc(t, size=4, bias_attr=False, num_flatten_dims=1)
            ret2 = layers.fc(ret, size=4)
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret2])[0]
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            fc1 = nn.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
            fc2 = nn.FC('fc2', size=4)
            ret = fc1(t)
            ret2 = fc2(ret)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret2])[0]
        with self.dynamic_graph():
            t = base.to_variable(inp)
            fc1 = nn.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
            fc2 = nn.FC('fc2', size=4)
            ret = fc1(t)
            dy_ret = fc2(ret)

        self.assertTrue(np.array_equal(static_ret, static_ret2))
        self.assertTrue(np.array_equal(static_ret, dy_ret._numpy()))

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            ret = layers.layer_norm(t)
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            lm = nn.LayerNorm('layer_norm')
            ret = lm(t)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
            lm = nn.LayerNorm('layer_norm')
            dy_ret = lm(base.to_variable(inp))

        self.assertTrue(np.allclose(static_ret, static_ret2))
        self.assertTrue(np.allclose(dy_ret._numpy(), static_ret2))

142 143 144 145 146 147 148 149 150 151 152 153 154 155
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
                feed={'t': np.ones(
                    [3, 3], dtype='float32')}, fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones(
                        [3, 3], dtype='float32'),
                    't2': np.ones(
                        [3, 3], dtype='float32')
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
173
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
174 175 176

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def test_conv2d(self):
        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            ret = layers.conv2d(input=images, num_filters=3, filter_size=[2, 2])
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            conv2d = nn.Conv2D(
                'conv2d', num_channels=3, num_filters=3, filter_size=[2, 2])
            ret = conv2d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            conv2d = nn.Conv2D(
                'conv2d', num_channels=3, num_filters=3, filter_size=[2, 2])
            dy_ret = conv2d(base.to_variable(images))

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
        self.assertTrue(np.allclose(static_ret, static_ret2))
Y
Yu Yang 已提交
204

M
minqiyang 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            static_ret = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            gru = nn.GRUUnit('gru', size=D * 3)
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.dynamic_graph():
            gru = nn.GRUUnit('gru', size=D * 3)
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

        for i in range(len(static_ret)):
            self.assertTrue(np.allclose(static_ret[i], static_ret2[i]))
            self.assertTrue(np.allclose(static_ret[i], dy_ret[i]._numpy()))

X
Xin Pan 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

            static_ret = self.get_static_graph_result(
                feed={
                    't': n,
                    't2': n2,
                    't3': n3,
                    't4': n4,
                    't5': n5,
                    't6': n6
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            ret = layers.elementwise_add(n, n2)
            ret = layers.elementwise_pow(ret, n3)
            ret = layers.elementwise_div(ret, n4)
            ret = layers.elementwise_sub(ret, n5)
            dy_ret = layers.elementwise_mul(ret, n6)
        self.assertTrue(
            np.allclose(static_ret, dy_ret._numpy()),
            '%s vs %s' % (static_ret, dy_ret._numpy()))

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
            min_ret = layers.elementwise_min(n, n2)
            max_ret = layers.elementwise_max(n, n2)

        self.assertTrue(np.allclose(n, min_ret._numpy()))
        self.assertTrue(np.allclose(n2, max_ret._numpy()))

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            out = layers.sequence_conv(seq, 2)
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]

        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2)
            out = seq_conv(seq)
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]
        self.assertTrue(
            np.allclose(np.array(static_rlt), np.array(static_rlt2)))

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28)
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
                'conv2d_transpose', num_filters=10, output_size=28)
            out = conv2d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.dynamic_graph():
            conv2d_transpose = nn.Conv2DTranspose(
                'conv2d_transpose', num_filters=10, output_size=28)
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))

    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            out = layers.bilinear_tensor_product(data_x, data_y, 6)

            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            btp = nn.BilinearTensorProduct('btp', 6)
            out = btp(data_x, data_y)
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
        with self.dynamic_graph():
            btp = nn.BilinearTensorProduct('btp', 6)
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))

    def test_prelu(self):
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')

        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            mode = 'channel'
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0)))
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            mode = 'channel'
            prelu = nn.PRelu(
                'prelu',
                mode=mode,
                param_attr=ParamAttr(initializer=Constant(1.0)))
            out = prelu(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.dynamic_graph():
            mode = 'channel'
            prelu = nn.PRelu(
                'prelu',
                mode=mode,
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt = prelu(base.to_variable(inp_np))

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))

    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb])[0]
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb2 = nn.Embedding(
                name_scope='embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            emb_rlt = emb2(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt])[0]
        with self.dynamic_graph():
            emb2 = nn.Embedding(
                name_scope='embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            static_rlt3 = emb2(base.to_variable(inp_word))

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(static_rlt3._numpy(), static_rlt))

    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
        inp_word = np.array([[[1]], [[2]], [[3]], [[4]], [[5]]]).astype('int64')
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
                        name='word_{0}'.format(i), shape=[1], dtype='int64'))

            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            nce_loss = layers.nce(input=embs,
                                  label=words[label_word],
                                  num_total_classes=dict_size,
                                  num_neg_samples=2,
                                  sampler="custom_dist",
                                  custom_dist=nid_freq_arr.tolist(),
                                  seed=seed,
                                  param_attr='nce.w',
                                  bias_attr='nce.b')
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss])[0]
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
                        name='word_{0}'.format(i), shape=[1], dtype='int64'))

            emb = nn.Embedding(
                'embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
            nce = nn.NCE('nce',
                         num_total_classes=dict_size,
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
                         bias_attr='nce.b')

            nce_loss2 = nce(embs2, words[label_word])
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2])[0]

        with self.dynamic_graph(force_to_use_cpu=True):
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))

            emb = nn.Embedding(
                'embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
            nce = nn.NCE('nce',
                         num_total_classes=dict_size,
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
                         bias_attr='nce.b')

            nce_loss3 = nce(embs3, words[label_word])

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(nce_loss3._numpy(), static_rlt))

Y
Yu Yang 已提交
598 599 600

class TestBook(unittest.TestCase):
    def test_fit_a_line(self):
601
        program = Program()
Y
Yu Yang 已提交
602 603 604 605 606
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
607
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
608
            self.assertIsNotNone(avg_cost)
Y
Yu Yang 已提交
609

Y
Yu Yang 已提交
610
        print(str(program))
Y
Yu Yang 已提交
611 612

    def test_recognize_digits_mlp(self):
613
        program = Program()
Y
Yu Yang 已提交
614 615 616 617 618 619
        with program_guard(program, startup_program=Program()):
            # Change g_program, so the rest layers use `g_program`
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
620 621 622 623
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
624
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
625
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
626 627 628
            self.assertIsNotNone(avg_cost)

        print(str(program))
629 630

    def test_simple_conv2d(self):
F
fengjiayi 已提交
631
        program = Program()
Y
Yu Yang 已提交
632
        with program_guard(program, startup_program=Program()):
633 634
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
Y
Yu Yang 已提交
635 636 637
            layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])

        print(str(program))
Y
Yu Yang 已提交
638

639 640
    def test_conv2d_transpose(self):
        program = Program()
Y
Yu Yang 已提交
641 642 643 644
        with program_guard(program):
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
        print(str(program))
645

F
fengjiayi 已提交
646
    def test_recognize_digits_conv(self):
F
fengjiayi 已提交
647
        program = Program()
Y
Yu Yang 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
        with program_guard(program, startup_program=Program()):
            images = layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
669
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
670 671

        print(str(program))
672

Q
QI JUN 已提交
673 674
    def test_word_embedding(self):
        program = Program()
Y
Yu Yang 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
        with program_guard(program, startup_program=Program()):
            dict_size = 10000
            embed_size = 32
            first_word = layers.data(name='firstw', shape=[1], dtype='int64')
            second_word = layers.data(name='secondw', shape=[1], dtype='int64')
            third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
            forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
            next_word = layers.data(name='nextw', shape=[1], dtype='int64')

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
Y
Yu Yang 已提交
715
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
716 717 718
            self.assertIsNotNone(avg_cost)

        print(str(program))
Q
Qiao Longfei 已提交
719 720 721

    def test_linear_chain_crf(self):
        program = Program()
Y
Yu Yang 已提交
722
        with program_guard(program, startup_program=Program()):
Q
Qiao Longfei 已提交
723
            label_dict_len = 10
Y
Yu Yang 已提交
724 725 726
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden = layers.fc(input=images, size=128)
Q
Qiao Longfei 已提交
727 728 729 730
            crf = layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Q
Qiao Longfei 已提交
731 732 733 734
            layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
M
minqiyang 已提交
735
                num_chunk_types=(label_dict_len - 1) // 2)
Q
qiaolongfei 已提交
736 737
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
Y
Yu Yang 已提交
738 739

        print(str(program))
Q
QI JUN 已提交
740

741 742 743 744 745
    def test_sigmoid_cross_entropy(self):
        program = Program()
        with program_guard(program):
            dat = layers.data(name='data', shape=[10], dtype='float32')
            lbl = layers.data(name='label', shape=[10], dtype='float32')
746
            ignore_index = -1
747 748
            self.assertIsNotNone(
                layers.sigmoid_cross_entropy_with_logits(
J
jerrywgz 已提交
749
                    x=dat, label=lbl, ignore_index=ignore_index))
750 751
        print(str(program))

W
weixing02 已提交
752 753 754
    def test_hsigmoid(self):
        program = Program()
        with program_guard(program):
W
weixing02 已提交
755 756
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[2], dtype='int64')
W
weixing02 已提交
757 758 759 760 761
            self.assertIsNotNone(
                layers.hsigmoid(
                    input=x, label=y, num_classes=2))
        print(str(program))

J
JiabinYang 已提交
762
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
763 764 765 766
        program2 = Program()
        with program_guard(program2):
            x2 = layers.data(name='x2', shape=[4, 8], dtype='float32')
            y2 = layers.data(name='y2', shape=[4], dtype='int64')
767 768 769 770
            path_table = layers.data(
                name='path_table', shape=[4, 6], dtype='int64')
            path_code = layers.data(
                name='path_code', shape=[4, 6], dtype='int64')
J
JiabinYang 已提交
771 772 773 774
            self.assertIsNotNone(
                layers.hsigmoid(
                    input=x2,
                    label=y2,
775
                    num_classes=6,
776 777 778
                    path_table=path_table,
                    path_code=path_code,
                    is_custom=True))
J
JiabinYang 已提交
779 780
            print(str(program2))

Y
yangyaming 已提交
781
    def test_sequence_expand(self):
Y
yangyaming 已提交
782 783 784 785
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
Y
yangyaming 已提交
786 787
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            self.assertIsNotNone(layers.sequence_expand(x=x, y=y, ref_level=1))
Y
yangyaming 已提交
788 789
        print(str(program))

Y
Yibing Liu 已提交
790 791 792 793 794 795 796 797
    def test_sequence_unpad(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
            length = layers.data(name='length', shape=[1], dtype='int64')
            self.assertIsNotNone(layers.sequence_unpad(x=x, length=length))
        print(str(program))

J
JiabinYang 已提交
798 799 800 801
    def test_pool2d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
J
JiabinYang 已提交
802 803 804 805 806 807
            self.assertIsNotNone(
                layers.pool2d(
                    x,
                    pool_size=[5, 3],
                    pool_stride=[1, 2],
                    pool_padding=(2, 1)))
J
JiabinYang 已提交
808

809 810 811 812 813 814 815
    def test_adaptive_pool2d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
            self.assertIsNotNone(
                layers.adaptive_pool2d(
                    x, [3, 3], pool_type='avg'))
D
dengkaipeng 已提交
816 817 818
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
819 820 821 822
            self.assertIsNotNone(layers.adaptive_pool2d(x, 3, pool_type='avg'))
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
823 824 825 826 827 828 829 830

    def test_adaptive_pool3d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 244, 224, 224], dtype='float32')
            self.assertIsNotNone(
                layers.adaptive_pool3d(
                    x, [3, 3, 3], pool_type='avg'))
D
dengkaipeng 已提交
831 832 833 834
            pool, mask = layers.adaptive_pool3d(
                x, [3, 3, 3], require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
835 836 837 838
            self.assertIsNotNone(layers.adaptive_pool3d(x, 3, pool_type='avg'))
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
839

Y
yangyaming 已提交
840 841 842 843 844 845 846
    def test_lstm_unit(self):
        program = Program()
        with program_guard(program):
            x_t_data = layers.data(
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
            prev_hidden_data = layers.data(
Y
yangyaming 已提交
847 848
                name='prev_hidden_data', shape=[10, 30], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
849 850 851 852 853 854 855 856
            prev_cell_data = layers.data(
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
            self.assertIsNotNone(
                layers.lstm_unit(
                    x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
        print(str(program))

857 858 859 860 861 862 863 864 865 866 867 868
    def test_dynamic_lstmp(self):
        program = Program()
        with program_guard(program):
            hidden_dim, proj_dim = 16, 8
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))
        print(str(program))

Y
yangyaming 已提交
869 870 871 872 873 874
    def test_sequence_softmax(self):
        program = Program()
        with program_guard(program):
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            seq = layers.fc(input=seq_data, size=20)
875
            self.assertIsNotNone(layers.sequence_softmax(seq))
Y
yangyaming 已提交
876 877
        print(str(program))

D
dangqingqing 已提交
878 879 880 881 882
    def test_softmax(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[10], dtype='float32')
            hid = layers.fc(input=data, size=20)
D
dengkaipeng 已提交
883
            self.assertIsNotNone(layers.softmax(hid, axis=1))
D
dangqingqing 已提交
884 885
        print(str(program))

J
JiabinYang 已提交
886
    def test_space_to_depth(self):
J
JiabinYang 已提交
887 888 889
        program = Program()
        with program_guard(program):
            data = layers.data(
J
JiabinYang 已提交
890
                name='data',
J
JiabinYang 已提交
891 892 893
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32')
J
JiabinYang 已提交
894
            self.assertIsNotNone(layers.space_to_depth(data, 3))
J
JiabinYang 已提交
895 896
        print(str(program))

Y
Yibing Liu 已提交
897 898 899
    def test_sequence_unsqueeze(self):
        program = Program()
        with program_guard(program):
900
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
901
            out = layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
902 903
            self.assertIsNotNone(out)
        print(str(program))
904

Y
Yibing Liu 已提交
905 906 907 908
    def test_squeeze(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
909
            out = layers.squeeze(input=x, axes=[2])
Y
Yibing Liu 已提交
910 911 912
            self.assertIsNotNone(out)
        print(str(program))

D
dragonwarrior 已提交
913 914 915 916 917 918 919
    def test_lrn(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[6, 2, 2], dtype='float32')
            self.assertIsNotNone(layers.lrn(data))
        print(str(program))

Q
qijun 已提交
920 921 922
    def test_get_places(self):
        program = Program()
        with program_guard(program):
923
            x = get_places(device_count=4)
Y
Yang Yu 已提交
924
            self.assertIsNotNone(x)
Q
qijun 已提交
925 926
        print(str(program))

927 928 929 930 931 932 933 934
    def test_sequence_reshape(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            self.assertIsNotNone(out)
        print(str(program))

W
wanghaoshuang 已提交
935 936 937 938
    def test_im2sequence(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
939
            y = layers.data(name='y', shape=[], dtype='float32')
W
wanghaoshuang 已提交
940
            output = layers.im2sequence(
941 942 943 944 945
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1])
W
wanghaoshuang 已提交
946 947 948
            self.assertIsNotNone(output)
        print(str(program))

949
    def test_sampled_softmax_with_cross_entropy(self):
X
xuezhong 已提交
950 951 952
        program = Program()
        with program_guard(program):
            logits = layers.data(name='Logits', shape=[256], dtype='float64')
X
xuezhong 已提交
953
            label = layers.data(name='Label', shape=[1], dtype='int64')
X
xuezhong 已提交
954
            num_samples = 25
X
xuezhong 已提交
955 956
            output = layers.sampled_softmax_with_cross_entropy(logits, label,
                                                               num_samples)
X
xuezhong 已提交
957 958 959
            self.assertIsNotNone(output)
        print(str(program))

Y
Yang Yu 已提交
960 961 962 963
    @decorators.prog_scope()
    def test_nce(self):
        window_size = 5
        words = []
964
        for i in range(window_size):
Y
Yang Yu 已提交
965 966 967 968 969
            words.append(
                layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

        dict_size = 10000
M
minqiyang 已提交
970
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
971 972

        embs = []
973
        for i in range(window_size):
Y
Yang Yu 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
            if i == label_word:
                continue

            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True)

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
        loss = layers.nce(input=embs,
                          label=words[label_word],
                          num_total_classes=dict_size,
                          param_attr='nce.w',
                          bias_attr='nce.b')
Y
Yu Yang 已提交
991
        avg_loss = layers.mean(loss)
Y
Yang Yu 已提交
992 993 994
        self.assertIsNotNone(avg_loss)
        print(str(default_main_program()))

Y
yangyaming 已提交
995 996 997 998 999 1000 1001 1002
    def test_row_conv(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
            self.assertIsNotNone(out)
        print(str(program))

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    def test_multiplex(self):
        program = Program()
        with program_guard(program):
            x1 = layers.data(name='x1', shape=[4], dtype='float32')
            x2 = layers.data(name='x2', shape=[4], dtype='float32')
            index = layers.data(name='index', shape=[1], dtype='int32')
            out = layers.multiplex(inputs=[x1, x2], index=index)
            self.assertIsNotNone(out)
        print(str(program))

1013 1014 1015 1016 1017
    def test_softmax_with_cross_entropy(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32')
            y = layers.data(name='label', shape=[1], dtype='int64')
1018 1019 1020 1021
            loss, softmax = layers.softmax_with_cross_entropy(
                x, y, return_softmax=True)
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
            loss = layers.softmax_with_cross_entropy(x, y)
            self.assertIsNotNone(loss)
        print(str(program))

    def test_smooth_l1(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='label', shape=[4], dtype='float32')
            loss = layers.smooth_l1(x, y)
            self.assertIsNotNone(loss)
        print(str(program))

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    def test_scatter(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32')
            updates = layers.data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32')
            out = layers.scatter(input=x, index=idx, updates=updates)
            self.assertIsNotNone(out)
        print(str(program))

Q
Qingsheng Li 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    def test_sequence_scatter(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                shape=[3, 6],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1)
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1)
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
            self.assertIsNotNone(out)
        print(str(program))

Y
Yibing Liu 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    def test_sequence_slice(self):
        program = Program()
        with program_guard(program):
            import numpy as np
            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1)
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length)
            self.assertIsNotNone(out)
        print(str(program))

Y
yangyaming 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099
    def test_lod_reset(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            print(layers.lod_reset(x=x, y=y))
        print(str(program))

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    def test_label_smooth(self):
        program = Program()
        with program_guard(program):
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
            self.assertIsNotNone(smooth_label)
        print(str(program))

Q
qingqing01 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118
    def test_topk(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
            self.assertIsNotNone(values)
            self.assertIsNotNone(indices)
        print(str(program))

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    def test_roi_pool(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_pool(x, rois, 7, 7, 0.6)
            self.assertIsNotNone(output)
        print(str(program))

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    def test_psroi_pool(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
            self.assertIsNotNone(output)
        print(str(program))

J
jerrywgz 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    def test_roi_align(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_align(x, rois, 14, 14, 0.5, 2)
            self.assertIsNotNone(output)
        print(str(program))

B
baiyf 已提交
1149
    def test_resize_bilinear(self):
1150 1151 1152
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
1153
            output = layers.resize_bilinear(x, out_shape=[12, 12])
1154
            self.assertIsNotNone(output)
B
baiyf 已提交
1155
            output = layers.resize_bilinear(x, scale=3)
1156 1157 1158
            self.assertIsNotNone(output)
        print(str(program))

1159
    def test_resize_nearest(self):
1160 1161 1162 1163 1164 1165 1166 1167 1168
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, out_shape=[12, 12])
            self.assertIsNotNone(output)
            output = layers.resize_nearest(x, scale=3)
            self.assertIsNotNone(output)
        print(str(program))

1169 1170 1171 1172 1173 1174 1175 1176
    def test_polygon_box_transform(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8, 4, 4], dtype="float32")
            output = layers.polygon_box_transform(input=x)
            self.assertIsNotNone(output)
        print(str(program))

1177 1178 1179 1180 1181 1182
    def test_l2_normalize(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8, 7, 10], dtype="float32")
            output = layers.l2_normalize(x, axis=1)

Q
qingqing01 已提交
1183 1184 1185 1186 1187 1188 1189 1190
    def test_maxout(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='x', shape=[8, 6, 6], dtype="float32")
            output = layers.maxout(x=data, groups=2)
            self.assertIsNotNone(output)
        print(str(program))

W
whs 已提交
1191
    def test_crop(self):
1192 1193 1194 1195 1196 1197 1198 1199
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 5], dtype="float32")
            y = layers.data(name='y', shape=[2, 3], dtype="float32")
            output = layers.crop(x, shape=y)
            self.assertIsNotNone(output)
        print(str(program))

W
whs 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208
    def test_mean_iou(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32')
            y = layers.data(name='label', shape=[1], dtype='int64')
            iou = layers.mean_iou(x, y, 2)
            self.assertIsNotNone(iou)
        print(str(program))

1209 1210 1211 1212 1213 1214 1215 1216 1217
    def test_argsort(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='x', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)
            self.assertIsNotNone(out)
            self.assertIsNotNone(ids)
        print(str(program))

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    def test_rank_loss(self):
        program = Program()
        with program_guard(program):
            label = layers.data(
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            left = layers.data(
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            right = layers.data(
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            out = layers.rank_loss(label, left, right, name="rank_loss")
            self.assertIsNotNone(out)
        print(str(program))

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    def test_flatten(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32")
            out = layers.flatten(x, axis=1, name="flatten")
            self.assertIsNotNone(out)

B
Bai Yifan 已提交
1251 1252 1253 1254 1255
    def test_shape(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
G
fix  
gongweibao 已提交
1256
            out = layers.shape(input)
B
Bai Yifan 已提交
1257 1258 1259
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
1260 1261 1262 1263 1264
    def test_pad2d(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
1265
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
W
whs 已提交
1266 1267 1268 1269 1270 1271
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape")
1272 1273 1274 1275 1276 1277
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape")
W
whs 已提交
1278
            self.assertIsNotNone(out)
1279
            self.assertIsNotNone(out_1)
W
whs 已提交
1280 1281
        print(str(program))

J
jerrywgz 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    def test_prelu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[5, 200, 100, 100], dtype="float32")
            mode = 'channel'
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu')
            self.assertIsNotNone(out)
        print(str(program))

T
tensor-tang 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
    def test_brelu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.brelu(input, t_min=1.0, t_max=20.0, name='brelu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_leaky_relu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.leaky_relu(input, alpha=0.1, name='leaky_relu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_soft_relu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sigmoid(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sigmoid(input, name='sigmoid')
            self.assertIsNotNone(out)
        print(str(program))

    def test_logsigmoid(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.logsigmoid(input, name='logsigmoid')
            self.assertIsNotNone(out)
        print(str(program))

    def test_exp(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.exp(input, name='exp')
            self.assertIsNotNone(out)
        print(str(program))

    def test_tanh(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.tanh(input, name='tanh')
            self.assertIsNotNone(out)
        print(str(program))

    def test_tanh_shrink(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.tanh_shrink(input, name='tanh_shrink')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sqrt(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sqrt(input, name='sqrt')
            self.assertIsNotNone(out)
        print(str(program))

    def test_abs(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.abs(input, name='abs')
            self.assertIsNotNone(out)
        print(str(program))

    def test_ceil(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.ceil(input, name='ceil')
            self.assertIsNotNone(out)
        print(str(program))

    def test_floor(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.floor(input, name='floor')
            self.assertIsNotNone(out)
        print(str(program))

    def test_cos(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.cos(input, name='cos')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sin(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sin(input, name='sin')
            self.assertIsNotNone(out)
        print(str(program))

    def test_round(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.round(input, name='round')
            self.assertIsNotNone(out)
        print(str(program))

    def test_reciprocal(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.reciprocal(input, name='reciprocal')
            self.assertIsNotNone(out)
        print(str(program))

    def test_square(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.square(input, name='square')
            self.assertIsNotNone(out)
        print(str(program))

    def test_softplus(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softplus(input, name='softplus')
            self.assertIsNotNone(out)
        print(str(program))

    def test_softsign(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softsign(input, name='softsign')
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
    def test_roi_perspective_transform(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1)
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
            self.assertIsNotNone(output)
        print(str(program))

C
chenweihang 已提交
1458 1459 1460
    def test_sequence_enumerate(self):
        program = Program()
        with program_guard(program):
C
chenweihang 已提交
1461
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
C
chenweihang 已提交
1462 1463 1464
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)
        print(str(program))

1465 1466 1467 1468 1469 1470 1471 1472 1473
    def test_cross_entropy(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[30, 10], dtype="float32")
            label = layers.data(name="label", shape=[30, 1], dtype="int32")
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
            self.assertIsNotNone(out)

1474 1475 1476 1477 1478 1479 1480 1481 1482
    def test_bpr_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[30, 10], dtype="float32")
            label = layers.data(name="label", shape=[30, 1], dtype="int32")
            out = layers.bpr_loss(x, label)
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
1483 1484 1485 1486 1487 1488 1489
    def test_expand(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="input", shape=[10], dtype='int32')
            out = layers.expand(x, [1, 2])
        print(str(program))

G
fix  
gongweibao 已提交
1490
    def test_uniform_random_batch_size_like(self):
G
fix  
gongweibao 已提交
1491 1492 1493 1494 1495
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1496
        print(str(program))
G
fix  
gongweibao 已提交
1497 1498 1499 1500 1501 1502

    def test_gaussian_random(self):
        program = Program()
        with program_guard(program):
            out = layers.gaussian_random(shape=[20, 30])
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1503
        print(str(program))
G
fix  
gongweibao 已提交
1504 1505 1506 1507

    def test_sampling_id(self):
        program = Program()
        with program_guard(program):
G
fix  
gongweibao 已提交
1508 1509 1510 1511 1512
            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)
G
fix  
gongweibao 已提交
1513 1514 1515

            out = layers.sampling_id(x)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1516
        print(str(program))
G
fix  
gongweibao 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525

    def test_gaussian_random_batch_size_like(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1526
        print(str(program))
G
fix  
gongweibao 已提交
1527 1528 1529 1530 1531 1532 1533 1534

    def test_sum(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.sum(input)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1535
        print(str(program))
G
fix  
gongweibao 已提交
1536 1537 1538 1539 1540 1541

    def test_slice(self):
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

G
fix  
gongweibao 已提交
1542 1543 1544
        program = Program()
        with program_guard(program):
            input = layers.data(
G
fix  
gongweibao 已提交
1545 1546 1547
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
merge  
gongweibao 已提交
1548

B
baiyf 已提交
1549 1550 1551 1552 1553
    def test_softshrink(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softshrink(input, name='softshrink')
G
fix  
gongweibao 已提交
1554
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1555
        print(str(program))
G
fix  
gongweibao 已提交
1556

X
Xin Pan 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565
    def iou_similarity(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[16], dtype="float32")
            y = layers.data(name="y", shape=[16], dtype="float32")
            out = layers.iou_similarity(x, y, name='iou_similarity')
            self.assertIsNotNone(out)
        print(str(program))

1566
    def test_grid_sampler(self):
D
dengkaipeng 已提交
1567 1568
        program = Program()
        with program_guard(program):
1569 1570
            x = layers.data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = layers.data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
1571 1572 1573
            out = layers.grid_sampler(x, grid)
            self.assertIsNotNone(out)
        print(str(program))
1574

W
whs 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    def test_affine_grid(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
            out_shape = layers.data(
                name="out_shape", shape=[-1], dtype="float32")
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
        print(str(program))
D
dengkaipeng 已提交
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    def test_bilinear_tensor_product_layer(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[4], dtype="float32")

            theta = layers.data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)

        print(str(program))

1601 1602 1603 1604 1605 1606 1607 1608 1609
    def test_batch_norm(self):
        program = Program()
        with program_guard(program):
            data = layers.data(
                name='data', shape=[32, 128, 128], dtype="float32")
            out = layers.batch_norm(data)

        print(str(program))

W
whs 已提交
1610 1611 1612 1613 1614 1615 1616 1617
    def test_range(self):
        program = Program()
        with program_guard(program):
            layers.range(0, 10, 2, 'int32')
            layers.range(0.1, 10.0, 0.2, 'float32')

        print(str(program))

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
    def test_spectral_norm(self):
        program = Program()
        with program_guard(program):
            weight = layers.data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False)
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
            self.assertIsNotNone(out)

D
dengkaipeng 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637
    def test_kldiv_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[32, 128, 128], dtype="float32")
            target = layers.data(
                name='target', shape=[32, 128, 128], dtype="float32")
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
            self.assertIsNotNone(loss)

1638 1639
        print(str(program))

1640 1641 1642 1643
    def test_temporal_shift(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
D
dengkaipeng 已提交
1644
            out = layers.temporal_shift(x, seg_num=4, shift_ratio=0.2)
1645 1646 1647
            self.assertIsNotNone(out)
        print(str(program))

S
shippingwang 已提交
1648 1649 1650
    def test_shuffle_channel(self):
        program = Program()
        with program_guard(program):
S
shippingwang 已提交
1651 1652
            x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
S
shippingwang 已提交
1653 1654 1655
            self.assertIsNotNone(out)
        print(str(program))

1656 1657 1658 1659 1660 1661 1662 1663 1664
    def test_fsp(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
            y = layers.data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
            self.assertIsNotNone(out)
        print(str(program))

Y
Yu Yang 已提交
1665 1666 1667

if __name__ == '__main__':
    unittest.main()