test_layers.py 60.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest

18 19 20 21 22 23
import contextlib
import numpy as np
import decorators

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
from paddle.fluid.imperative import nn
from paddle.fluid.imperative import base


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

45 46 47 48 49 50 51 52
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
53 54 55 56 57 58 59 60

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

61
    def get_static_graph_result(self, feed, fetch_list, with_lod=False):
62 63 64 65
        exe = fluid.Executor(self._get_place())
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
66 67
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))
68 69

    @contextlib.contextmanager
70 71 72
    def dynamic_graph(self, force_to_use_cpu=False):
        with fluid.imperative.guard(
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
73 74 75 76 77 78
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield


class TestLayer(LayerTest):
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            ret = layers.layer_norm(t)
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            lm = nn.LayerNorm('layer_norm')
            ret = lm(t)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
            lm = nn.LayerNorm('layer_norm')
            dy_ret = lm(base.to_variable(inp))

        self.assertTrue(np.allclose(static_ret, static_ret2))
        self.assertTrue(np.allclose(dy_ret._numpy(), static_ret2))

107 108 109 110 111 112 113 114 115 116 117 118 119 120
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
                feed={'t': np.ones(
                    [3, 3], dtype='float32')}, fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones(
                        [3, 3], dtype='float32'),
                    't2': np.ones(
                        [3, 3], dtype='float32')
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
138
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
139 140 141

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    def test_conv2d(self):
        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            ret = layers.conv2d(input=images, num_filters=3, filter_size=[2, 2])
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            conv2d = nn.Conv2D(
                'conv2d', num_channels=3, num_filters=3, filter_size=[2, 2])
            ret = conv2d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            conv2d = nn.Conv2D(
                'conv2d', num_channels=3, num_filters=3, filter_size=[2, 2])
            dy_ret = conv2d(base.to_variable(images))

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
        self.assertTrue(np.allclose(static_ret, static_ret2))
Y
Yu Yang 已提交
169

M
minqiyang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            static_ret = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            gru = nn.GRUUnit('gru', size=D * 3)
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.dynamic_graph():
            gru = nn.GRUUnit('gru', size=D * 3)
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

        for i in range(len(static_ret)):
            self.assertTrue(np.allclose(static_ret[i], static_ret2[i]))
            self.assertTrue(np.allclose(static_ret[i], dy_ret[i]._numpy()))

X
Xin Pan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

            static_ret = self.get_static_graph_result(
                feed={
                    't': n,
                    't2': n2,
                    't3': n3,
                    't4': n4,
                    't5': n5,
                    't6': n6
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            ret = layers.elementwise_add(n, n2)
            ret = layers.elementwise_pow(ret, n3)
            ret = layers.elementwise_div(ret, n4)
            ret = layers.elementwise_sub(ret, n5)
            dy_ret = layers.elementwise_mul(ret, n6)
        self.assertTrue(
            np.allclose(static_ret, dy_ret._numpy()),
            '%s vs %s' % (static_ret, dy_ret._numpy()))

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
            min_ret = layers.elementwise_min(n, n2)
            max_ret = layers.elementwise_max(n, n2)

        self.assertTrue(np.allclose(n, min_ret._numpy()))
        self.assertTrue(np.allclose(n2, max_ret._numpy()))

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            out = layers.sequence_conv(seq, 2)
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]

        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2)
            out = seq_conv(seq)
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]
        self.assertTrue(
            np.allclose(np.array(static_rlt), np.array(static_rlt2)))

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28)
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
                'conv2d_transpose', num_filters=10, output_size=28)
            out = conv2d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.dynamic_graph():
            conv2d_transpose = nn.Conv2DTranspose(
                'conv2d_transpose', num_filters=10, output_size=28)
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))

    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            out = layers.bilinear_tensor_product(data_x, data_y, 6)

            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            btp = nn.BilinearTensorProduct('btp', 6)
            out = btp(data_x, data_y)
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
        with self.dynamic_graph():
            btp = nn.BilinearTensorProduct('btp', 6)
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))

    def test_prelu(self):
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')

        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            mode = 'channel'
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0)))
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            mode = 'channel'
            prelu = nn.PRelu(
                'prelu',
                mode=mode,
                param_attr=ParamAttr(initializer=Constant(1.0)))
            out = prelu(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.dynamic_graph():
            mode = 'channel'
            prelu = nn.PRelu(
                'prelu',
                mode=mode,
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt = prelu(base.to_variable(inp_np))

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))

    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb])[0]
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb2 = nn.Embedding(
                name_scope='embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            emb_rlt = emb2(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt])[0]
        with self.dynamic_graph():
            emb2 = nn.Embedding(
                name_scope='embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            static_rlt3 = emb2(base.to_variable(inp_word))

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(static_rlt3._numpy(), static_rlt))

    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
        inp_word = np.array([[[1]], [[2]], [[3]], [[4]], [[5]]]).astype('int64')
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
                        name='word_{0}'.format(i), shape=[1], dtype='int64'))

            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            nce_loss = layers.nce(input=embs,
                                  label=words[label_word],
                                  num_total_classes=dict_size,
                                  num_neg_samples=2,
                                  sampler="custom_dist",
                                  custom_dist=nid_freq_arr.tolist(),
                                  seed=seed,
                                  param_attr='nce.w',
                                  bias_attr='nce.b')
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss])[0]
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
                        name='word_{0}'.format(i), shape=[1], dtype='int64'))

            emb = nn.Embedding(
                'embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
            nce = nn.NCE('nce',
                         num_total_classes=dict_size,
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
                         bias_attr='nce.b')

            nce_loss2 = nce(embs2, words[label_word])
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2])[0]

        with self.dynamic_graph(force_to_use_cpu=True):
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))

            emb = nn.Embedding(
                'embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
            nce = nn.NCE('nce',
                         num_total_classes=dict_size,
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
                         bias_attr='nce.b')

            nce_loss3 = nce(embs3, words[label_word])

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(nce_loss3._numpy(), static_rlt))

Y
Yu Yang 已提交
563 564 565

class TestBook(unittest.TestCase):
    def test_fit_a_line(self):
566
        program = Program()
Y
Yu Yang 已提交
567 568 569 570 571
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
572
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
573
            self.assertIsNotNone(avg_cost)
Y
Yu Yang 已提交
574

Y
Yu Yang 已提交
575
        print(str(program))
Y
Yu Yang 已提交
576 577

    def test_recognize_digits_mlp(self):
578
        program = Program()
Y
Yu Yang 已提交
579 580 581 582 583 584
        with program_guard(program, startup_program=Program()):
            # Change g_program, so the rest layers use `g_program`
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
585 586 587 588
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
589
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
590
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
591 592 593
            self.assertIsNotNone(avg_cost)

        print(str(program))
594 595

    def test_simple_conv2d(self):
F
fengjiayi 已提交
596
        program = Program()
Y
Yu Yang 已提交
597
        with program_guard(program, startup_program=Program()):
598 599
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
Y
Yu Yang 已提交
600 601 602
            layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])

        print(str(program))
Y
Yu Yang 已提交
603

604 605
    def test_conv2d_transpose(self):
        program = Program()
Y
Yu Yang 已提交
606 607 608 609
        with program_guard(program):
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
        print(str(program))
610

F
fengjiayi 已提交
611
    def test_recognize_digits_conv(self):
F
fengjiayi 已提交
612
        program = Program()
Y
Yu Yang 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
        with program_guard(program, startup_program=Program()):
            images = layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
634
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
635 636

        print(str(program))
637

Q
QI JUN 已提交
638 639
    def test_word_embedding(self):
        program = Program()
Y
Yu Yang 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        with program_guard(program, startup_program=Program()):
            dict_size = 10000
            embed_size = 32
            first_word = layers.data(name='firstw', shape=[1], dtype='int64')
            second_word = layers.data(name='secondw', shape=[1], dtype='int64')
            third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
            forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
            next_word = layers.data(name='nextw', shape=[1], dtype='int64')

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
Y
Yu Yang 已提交
680
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
681 682 683
            self.assertIsNotNone(avg_cost)

        print(str(program))
Q
Qiao Longfei 已提交
684 685 686

    def test_linear_chain_crf(self):
        program = Program()
Y
Yu Yang 已提交
687
        with program_guard(program, startup_program=Program()):
Q
Qiao Longfei 已提交
688
            label_dict_len = 10
Y
Yu Yang 已提交
689 690 691
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden = layers.fc(input=images, size=128)
Q
Qiao Longfei 已提交
692 693 694 695
            crf = layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Q
Qiao Longfei 已提交
696 697 698 699
            layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
M
minqiyang 已提交
700
                num_chunk_types=(label_dict_len - 1) // 2)
Q
qiaolongfei 已提交
701 702
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
Y
Yu Yang 已提交
703 704

        print(str(program))
Q
QI JUN 已提交
705

706 707 708 709 710
    def test_sigmoid_cross_entropy(self):
        program = Program()
        with program_guard(program):
            dat = layers.data(name='data', shape=[10], dtype='float32')
            lbl = layers.data(name='label', shape=[10], dtype='float32')
711
            ignore_index = -1
712 713
            self.assertIsNotNone(
                layers.sigmoid_cross_entropy_with_logits(
J
jerrywgz 已提交
714
                    x=dat, label=lbl, ignore_index=ignore_index))
715 716
        print(str(program))

W
weixing02 已提交
717 718 719
    def test_hsigmoid(self):
        program = Program()
        with program_guard(program):
W
weixing02 已提交
720 721
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[2], dtype='int64')
W
weixing02 已提交
722 723 724 725 726
            self.assertIsNotNone(
                layers.hsigmoid(
                    input=x, label=y, num_classes=2))
        print(str(program))

J
JiabinYang 已提交
727
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
728 729 730 731
        program2 = Program()
        with program_guard(program2):
            x2 = layers.data(name='x2', shape=[4, 8], dtype='float32')
            y2 = layers.data(name='y2', shape=[4], dtype='int64')
732 733 734 735
            path_table = layers.data(
                name='path_table', shape=[4, 6], dtype='int64')
            path_code = layers.data(
                name='path_code', shape=[4, 6], dtype='int64')
J
JiabinYang 已提交
736 737 738 739
            self.assertIsNotNone(
                layers.hsigmoid(
                    input=x2,
                    label=y2,
740
                    num_classes=6,
741 742 743
                    path_table=path_table,
                    path_code=path_code,
                    is_custom=True))
J
JiabinYang 已提交
744 745
            print(str(program2))

Y
yangyaming 已提交
746
    def test_sequence_expand(self):
Y
yangyaming 已提交
747 748 749 750
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
Y
yangyaming 已提交
751 752
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            self.assertIsNotNone(layers.sequence_expand(x=x, y=y, ref_level=1))
Y
yangyaming 已提交
753 754
        print(str(program))

Y
Yibing Liu 已提交
755 756 757 758 759 760 761 762
    def test_sequence_unpad(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
            length = layers.data(name='length', shape=[1], dtype='int64')
            self.assertIsNotNone(layers.sequence_unpad(x=x, length=length))
        print(str(program))

J
JiabinYang 已提交
763 764 765 766
    def test_pool2d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
J
JiabinYang 已提交
767 768 769 770 771 772
            self.assertIsNotNone(
                layers.pool2d(
                    x,
                    pool_size=[5, 3],
                    pool_stride=[1, 2],
                    pool_padding=(2, 1)))
J
JiabinYang 已提交
773

774 775 776 777 778 779 780
    def test_adaptive_pool2d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
            self.assertIsNotNone(
                layers.adaptive_pool2d(
                    x, [3, 3], pool_type='avg'))
D
dengkaipeng 已提交
781 782 783
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
784 785 786 787
            self.assertIsNotNone(layers.adaptive_pool2d(x, 3, pool_type='avg'))
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
788 789 790 791 792 793 794 795

    def test_adaptive_pool3d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 244, 224, 224], dtype='float32')
            self.assertIsNotNone(
                layers.adaptive_pool3d(
                    x, [3, 3, 3], pool_type='avg'))
D
dengkaipeng 已提交
796 797 798 799
            pool, mask = layers.adaptive_pool3d(
                x, [3, 3, 3], require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
800 801 802 803
            self.assertIsNotNone(layers.adaptive_pool3d(x, 3, pool_type='avg'))
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
804

Y
yangyaming 已提交
805 806 807 808 809 810 811
    def test_lstm_unit(self):
        program = Program()
        with program_guard(program):
            x_t_data = layers.data(
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
            prev_hidden_data = layers.data(
Y
yangyaming 已提交
812 813
                name='prev_hidden_data', shape=[10, 30], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
814 815 816 817 818 819 820 821
            prev_cell_data = layers.data(
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
            self.assertIsNotNone(
                layers.lstm_unit(
                    x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
        print(str(program))

822 823 824 825 826 827 828 829 830 831 832 833
    def test_dynamic_lstmp(self):
        program = Program()
        with program_guard(program):
            hidden_dim, proj_dim = 16, 8
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))
        print(str(program))

Y
yangyaming 已提交
834 835 836 837 838 839
    def test_sequence_softmax(self):
        program = Program()
        with program_guard(program):
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            seq = layers.fc(input=seq_data, size=20)
840
            self.assertIsNotNone(layers.sequence_softmax(seq))
Y
yangyaming 已提交
841 842
        print(str(program))

D
dangqingqing 已提交
843 844 845 846 847
    def test_softmax(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[10], dtype='float32')
            hid = layers.fc(input=data, size=20)
848
            self.assertIsNotNone(layers.softmax(hid))
D
dangqingqing 已提交
849 850
        print(str(program))

J
JiabinYang 已提交
851
    def test_space_to_depth(self):
J
JiabinYang 已提交
852 853 854
        program = Program()
        with program_guard(program):
            data = layers.data(
J
JiabinYang 已提交
855
                name='data',
J
JiabinYang 已提交
856 857 858
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32')
J
JiabinYang 已提交
859
            self.assertIsNotNone(layers.space_to_depth(data, 3))
J
JiabinYang 已提交
860 861
        print(str(program))

Y
Yibing Liu 已提交
862 863 864
    def test_sequence_unsqueeze(self):
        program = Program()
        with program_guard(program):
865
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
866
            out = layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
867 868
            self.assertIsNotNone(out)
        print(str(program))
869

Y
Yibing Liu 已提交
870 871 872 873
    def test_squeeze(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
874
            out = layers.squeeze(input=x, axes=[2])
Y
Yibing Liu 已提交
875 876 877
            self.assertIsNotNone(out)
        print(str(program))

D
dragonwarrior 已提交
878 879 880 881 882 883 884
    def test_lrn(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[6, 2, 2], dtype='float32')
            self.assertIsNotNone(layers.lrn(data))
        print(str(program))

Q
qijun 已提交
885 886 887
    def test_get_places(self):
        program = Program()
        with program_guard(program):
888
            x = get_places(device_count=4)
Y
Yang Yu 已提交
889
            self.assertIsNotNone(x)
Q
qijun 已提交
890 891
        print(str(program))

892 893 894 895 896 897 898 899
    def test_sequence_reshape(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            self.assertIsNotNone(out)
        print(str(program))

W
wanghaoshuang 已提交
900 901 902 903
    def test_im2sequence(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
904
            y = layers.data(name='y', shape=[], dtype='float32')
W
wanghaoshuang 已提交
905
            output = layers.im2sequence(
906 907 908 909 910
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1])
W
wanghaoshuang 已提交
911 912 913
            self.assertIsNotNone(output)
        print(str(program))

914
    def test_sampled_softmax_with_cross_entropy(self):
X
xuezhong 已提交
915 916 917
        program = Program()
        with program_guard(program):
            logits = layers.data(name='Logits', shape=[256], dtype='float64')
X
xuezhong 已提交
918
            label = layers.data(name='Label', shape=[1], dtype='int64')
X
xuezhong 已提交
919
            num_samples = 25
X
xuezhong 已提交
920 921
            output = layers.sampled_softmax_with_cross_entropy(logits, label,
                                                               num_samples)
X
xuezhong 已提交
922 923 924
            self.assertIsNotNone(output)
        print(str(program))

Y
Yang Yu 已提交
925 926 927 928
    @decorators.prog_scope()
    def test_nce(self):
        window_size = 5
        words = []
929
        for i in range(window_size):
Y
Yang Yu 已提交
930 931 932 933 934
            words.append(
                layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

        dict_size = 10000
M
minqiyang 已提交
935
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
936 937

        embs = []
938
        for i in range(window_size):
Y
Yang Yu 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
            if i == label_word:
                continue

            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True)

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
        loss = layers.nce(input=embs,
                          label=words[label_word],
                          num_total_classes=dict_size,
                          param_attr='nce.w',
                          bias_attr='nce.b')
Y
Yu Yang 已提交
956
        avg_loss = layers.mean(loss)
Y
Yang Yu 已提交
957 958 959
        self.assertIsNotNone(avg_loss)
        print(str(default_main_program()))

Y
yangyaming 已提交
960 961 962 963 964 965 966 967
    def test_row_conv(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
            self.assertIsNotNone(out)
        print(str(program))

968 969 970 971 972 973 974 975 976 977
    def test_multiplex(self):
        program = Program()
        with program_guard(program):
            x1 = layers.data(name='x1', shape=[4], dtype='float32')
            x2 = layers.data(name='x2', shape=[4], dtype='float32')
            index = layers.data(name='index', shape=[1], dtype='int32')
            out = layers.multiplex(inputs=[x1, x2], index=index)
            self.assertIsNotNone(out)
        print(str(program))

978 979 980 981 982
    def test_softmax_with_cross_entropy(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32')
            y = layers.data(name='label', shape=[1], dtype='int64')
983 984 985 986
            loss, softmax = layers.softmax_with_cross_entropy(
                x, y, return_softmax=True)
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)
987 988 989 990 991 992 993 994 995 996 997 998 999
            loss = layers.softmax_with_cross_entropy(x, y)
            self.assertIsNotNone(loss)
        print(str(program))

    def test_smooth_l1(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='label', shape=[4], dtype='float32')
            loss = layers.smooth_l1(x, y)
            self.assertIsNotNone(loss)
        print(str(program))

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    def test_scatter(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32')
            updates = layers.data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32')
            out = layers.scatter(input=x, index=idx, updates=updates)
            self.assertIsNotNone(out)
        print(str(program))

Q
Qingsheng Li 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    def test_sequence_scatter(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                shape=[3, 6],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1)
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1)
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
            self.assertIsNotNone(out)
        print(str(program))

Y
Yibing Liu 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    def test_sequence_slice(self):
        program = Program()
        with program_guard(program):
            import numpy as np
            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1)
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length)
            self.assertIsNotNone(out)
        print(str(program))

Y
yangyaming 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064
    def test_lod_reset(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            print(layers.lod_reset(x=x, y=y))
        print(str(program))

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    def test_label_smooth(self):
        program = Program()
        with program_guard(program):
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
            self.assertIsNotNone(smooth_label)
        print(str(program))

Q
qingqing01 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
    def test_topk(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
            self.assertIsNotNone(values)
            self.assertIsNotNone(indices)
        print(str(program))

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    def test_roi_pool(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_pool(x, rois, 7, 7, 0.6)
            self.assertIsNotNone(output)
        print(str(program))

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    def test_psroi_pool(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
            self.assertIsNotNone(output)
        print(str(program))

J
jerrywgz 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    def test_roi_align(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_align(x, rois, 14, 14, 0.5, 2)
            self.assertIsNotNone(output)
        print(str(program))

B
baiyf 已提交
1114
    def test_resize_bilinear(self):
1115 1116 1117
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
1118
            output = layers.resize_bilinear(x, out_shape=[12, 12])
1119
            self.assertIsNotNone(output)
B
baiyf 已提交
1120
            output = layers.resize_bilinear(x, scale=3)
1121 1122 1123
            self.assertIsNotNone(output)
        print(str(program))

1124
    def test_resize_nearest(self):
1125 1126 1127 1128 1129 1130 1131 1132 1133
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, out_shape=[12, 12])
            self.assertIsNotNone(output)
            output = layers.resize_nearest(x, scale=3)
            self.assertIsNotNone(output)
        print(str(program))

1134 1135 1136 1137 1138 1139 1140 1141
    def test_polygon_box_transform(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8, 4, 4], dtype="float32")
            output = layers.polygon_box_transform(input=x)
            self.assertIsNotNone(output)
        print(str(program))

1142 1143 1144 1145 1146 1147
    def test_l2_normalize(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8, 7, 10], dtype="float32")
            output = layers.l2_normalize(x, axis=1)

Q
qingqing01 已提交
1148 1149 1150 1151 1152 1153 1154 1155
    def test_maxout(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='x', shape=[8, 6, 6], dtype="float32")
            output = layers.maxout(x=data, groups=2)
            self.assertIsNotNone(output)
        print(str(program))

W
whs 已提交
1156
    def test_crop(self):
1157 1158 1159 1160 1161 1162 1163 1164
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 5], dtype="float32")
            y = layers.data(name='y', shape=[2, 3], dtype="float32")
            output = layers.crop(x, shape=y)
            self.assertIsNotNone(output)
        print(str(program))

W
whs 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173
    def test_mean_iou(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32')
            y = layers.data(name='label', shape=[1], dtype='int64')
            iou = layers.mean_iou(x, y, 2)
            self.assertIsNotNone(iou)
        print(str(program))

1174 1175 1176 1177 1178 1179 1180 1181 1182
    def test_argsort(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='x', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)
            self.assertIsNotNone(out)
            self.assertIsNotNone(ids)
        print(str(program))

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    def test_rank_loss(self):
        program = Program()
        with program_guard(program):
            label = layers.data(
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            left = layers.data(
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            right = layers.data(
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            out = layers.rank_loss(label, left, right, name="rank_loss")
            self.assertIsNotNone(out)
        print(str(program))

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    def test_flatten(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32")
            out = layers.flatten(x, axis=1, name="flatten")
            self.assertIsNotNone(out)

B
Bai Yifan 已提交
1216 1217 1218 1219 1220
    def test_shape(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
G
fix  
gongweibao 已提交
1221
            out = layers.shape(input)
B
Bai Yifan 已提交
1222 1223 1224
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
1225 1226 1227 1228 1229
    def test_pad2d(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
1230
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
W
whs 已提交
1231 1232 1233 1234 1235 1236
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape")
1237 1238 1239 1240 1241 1242
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape")
W
whs 已提交
1243
            self.assertIsNotNone(out)
1244
            self.assertIsNotNone(out_1)
W
whs 已提交
1245 1246
        print(str(program))

J
jerrywgz 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    def test_prelu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[5, 200, 100, 100], dtype="float32")
            mode = 'channel'
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu')
            self.assertIsNotNone(out)
        print(str(program))

T
tensor-tang 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    def test_brelu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.brelu(input, t_min=1.0, t_max=20.0, name='brelu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_leaky_relu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.leaky_relu(input, alpha=0.1, name='leaky_relu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_soft_relu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sigmoid(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sigmoid(input, name='sigmoid')
            self.assertIsNotNone(out)
        print(str(program))

    def test_logsigmoid(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.logsigmoid(input, name='logsigmoid')
            self.assertIsNotNone(out)
        print(str(program))

    def test_exp(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.exp(input, name='exp')
            self.assertIsNotNone(out)
        print(str(program))

    def test_tanh(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.tanh(input, name='tanh')
            self.assertIsNotNone(out)
        print(str(program))

    def test_tanh_shrink(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.tanh_shrink(input, name='tanh_shrink')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sqrt(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sqrt(input, name='sqrt')
            self.assertIsNotNone(out)
        print(str(program))

    def test_abs(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.abs(input, name='abs')
            self.assertIsNotNone(out)
        print(str(program))

    def test_ceil(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.ceil(input, name='ceil')
            self.assertIsNotNone(out)
        print(str(program))

    def test_floor(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.floor(input, name='floor')
            self.assertIsNotNone(out)
        print(str(program))

    def test_cos(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.cos(input, name='cos')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sin(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sin(input, name='sin')
            self.assertIsNotNone(out)
        print(str(program))

    def test_round(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.round(input, name='round')
            self.assertIsNotNone(out)
        print(str(program))

    def test_reciprocal(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.reciprocal(input, name='reciprocal')
            self.assertIsNotNone(out)
        print(str(program))

    def test_square(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.square(input, name='square')
            self.assertIsNotNone(out)
        print(str(program))

    def test_softplus(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softplus(input, name='softplus')
            self.assertIsNotNone(out)
        print(str(program))

    def test_softsign(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softsign(input, name='softsign')
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
    def test_roi_perspective_transform(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1)
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
            self.assertIsNotNone(output)
        print(str(program))

C
chenweihang 已提交
1423 1424 1425
    def test_sequence_enumerate(self):
        program = Program()
        with program_guard(program):
C
chenweihang 已提交
1426
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
C
chenweihang 已提交
1427 1428 1429
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)
        print(str(program))

1430 1431 1432 1433 1434 1435 1436 1437 1438
    def test_cross_entropy(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[30, 10], dtype="float32")
            label = layers.data(name="label", shape=[30, 1], dtype="int32")
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
            self.assertIsNotNone(out)

1439 1440 1441 1442 1443 1444 1445 1446 1447
    def test_bpr_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[30, 10], dtype="float32")
            label = layers.data(name="label", shape=[30, 1], dtype="int32")
            out = layers.bpr_loss(x, label)
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
1448 1449 1450 1451 1452 1453 1454
    def test_expand(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="input", shape=[10], dtype='int32')
            out = layers.expand(x, [1, 2])
        print(str(program))

G
fix  
gongweibao 已提交
1455
    def test_uniform_random_batch_size_like(self):
G
fix  
gongweibao 已提交
1456 1457 1458 1459 1460
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1461
        print(str(program))
G
fix  
gongweibao 已提交
1462 1463 1464 1465 1466 1467

    def test_gaussian_random(self):
        program = Program()
        with program_guard(program):
            out = layers.gaussian_random(shape=[20, 30])
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1468
        print(str(program))
G
fix  
gongweibao 已提交
1469 1470 1471 1472

    def test_sampling_id(self):
        program = Program()
        with program_guard(program):
G
fix  
gongweibao 已提交
1473 1474 1475 1476 1477
            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)
G
fix  
gongweibao 已提交
1478 1479 1480

            out = layers.sampling_id(x)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1481
        print(str(program))
G
fix  
gongweibao 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490

    def test_gaussian_random_batch_size_like(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1491
        print(str(program))
G
fix  
gongweibao 已提交
1492 1493 1494 1495 1496 1497 1498 1499

    def test_sum(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.sum(input)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1500
        print(str(program))
G
fix  
gongweibao 已提交
1501 1502 1503 1504 1505 1506

    def test_slice(self):
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

G
fix  
gongweibao 已提交
1507 1508 1509
        program = Program()
        with program_guard(program):
            input = layers.data(
G
fix  
gongweibao 已提交
1510 1511 1512
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
merge  
gongweibao 已提交
1513

B
baiyf 已提交
1514 1515 1516 1517 1518
    def test_softshrink(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softshrink(input, name='softshrink')
G
fix  
gongweibao 已提交
1519
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1520
        print(str(program))
G
fix  
gongweibao 已提交
1521

X
Xin Pan 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530
    def iou_similarity(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[16], dtype="float32")
            y = layers.data(name="y", shape=[16], dtype="float32")
            out = layers.iou_similarity(x, y, name='iou_similarity')
            self.assertIsNotNone(out)
        print(str(program))

1531
    def test_grid_sampler(self):
D
dengkaipeng 已提交
1532 1533
        program = Program()
        with program_guard(program):
1534 1535
            x = layers.data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = layers.data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
1536 1537 1538
            out = layers.grid_sampler(x, grid)
            self.assertIsNotNone(out)
        print(str(program))
1539

W
whs 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
    def test_affine_grid(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
            out_shape = layers.data(
                name="out_shape", shape=[-1], dtype="float32")
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
        print(str(program))
D
dengkaipeng 已提交
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    def test_bilinear_tensor_product_layer(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[4], dtype="float32")

            theta = layers.data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)

        print(str(program))

1566 1567 1568 1569 1570 1571 1572 1573 1574
    def test_batch_norm(self):
        program = Program()
        with program_guard(program):
            data = layers.data(
                name='data', shape=[32, 128, 128], dtype="float32")
            out = layers.batch_norm(data)

        print(str(program))

W
whs 已提交
1575 1576 1577 1578 1579 1580 1581 1582
    def test_range(self):
        program = Program()
        with program_guard(program):
            layers.range(0, 10, 2, 'int32')
            layers.range(0.1, 10.0, 0.2, 'float32')

        print(str(program))

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
    def test_spectral_norm(self):
        program = Program()
        with program_guard(program):
            weight = layers.data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False)
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
            self.assertIsNotNone(out)

        print(str(program))

S
shippingwang 已提交
1596 1597 1598
    def test_shuffle_channel(self):
        program = Program()
        with program_guard(program):
S
shippingwang 已提交
1599 1600
            x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
S
shippingwang 已提交
1601 1602 1603
            self.assertIsNotNone(out)
        print(str(program))

1604 1605 1606 1607 1608 1609 1610 1611 1612
    def test_fsp(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
            y = layers.data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
            self.assertIsNotNone(out)
        print(str(program))

Y
Yu Yang 已提交
1613 1614 1615

if __name__ == '__main__':
    unittest.main()