operator.h 24.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
33
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/scope.h"
35
#include "paddle/fluid/framework/selected_rows_utils.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/tensor.h"
37
#include "paddle/fluid/framework/unused_var_check.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
C
chentianyu03 已提交
41
#include "paddle/utils/flat_hash_map.h"
Q
Qiao Longfei 已提交
42

43
#include "paddle/fluid/framework/convert_utils.h"
44
#include "paddle/pten/core/compat/arg_map_context.h"
45
#include "paddle/pten/core/compat/op_utils.h"
46 47
#include "paddle/pten/core/kernel_context.h"
#include "paddle/pten/core/kernel_factory.h"
48

W
wanghuancoder 已提交
49 50 51 52 53 54 55 56 57
namespace paddle {
namespace framework {
class InferShapeContext;
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

Q
Qiao Longfei 已提交
58 59
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
60 61 62
namespace paddle {
namespace framework {

63
/// If a variable is a empty variable, that name will be used.
64
constexpr char kEmptyVarName[] = "@EMPTY@";
65 66 67

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
68
constexpr char kTempVarName[] = "@TEMP@";
69 70

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
71 72
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
73
constexpr char kGradVarSuffix[] = "@GRAD";
74

M
minqiyang 已提交
75 76
constexpr size_t kGradVarSuffixSize = 5U;

77
/// Variables with this suffix are supposed to be filled up with zeros.
78
constexpr char kZeroVarSuffix[] = "@ZERO";
79

C
chengduo 已提交
80 81 82
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
83 84 85 86 87 88 89 90
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
91 92 93 94 95 96 97 98 99
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
100
// define some kernel priority
101
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
102 103
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

104
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
105 106 107 108 109
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
110 111
}

M
minqiyang 已提交
112
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
113
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
114 115 116 117 118
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
119 120
}

121
inline bool VarIsTensor(const Variable& var) {
122
  return var.IsType<LoDTensor>() || var.IsType<pten::SelectedRows>();
123 124
}

C
chengduo 已提交
125 126
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
127

128
class ExecutionContext;
W
wanghuancoder 已提交
129
class OperatorBase;
130

X
Xin Pan 已提交
131 132
class RuntimeContext {
 public:
X
Xin Pan 已提交
133 134
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
135

X
Xin Pan 已提交
136 137 138 139
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
140 141 142 143
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
144
/**
X
Xin Pan 已提交
145
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
146 147 148 149 150 151
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
152 153
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
154

Q
Qiao Longfei 已提交
155 156
  virtual ~OperatorBase() {}

157
  /// Executor will call this interface function to Run an op.
158 159
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
160

T
typhoonzero 已提交
161 162 163
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

164
  /// if scope is not null, also show dimensions of arguments
165
  virtual std::string DebugStringEx(const ScopeBase* scope) const;
166
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
167

168
  virtual bool SupportGPU() const { return false; }
B
Baibaifan 已提交
169
  virtual bool SupportNPU() const { return false; }
F
fwenguang 已提交
170
  virtual bool SupportMLU() const { return false; }
171

172 173
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
174
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
175 176
  template <typename T>
  inline const T& Attr(const std::string& name) const {
177 178 179
    PADDLE_ENFORCE_NE(
        attrs_.find(name), attrs_.end(),
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
180
    return BOOST_GET_CONST(T, attrs_.at(name));
181
  }
182 183 184 185 186 187 188 189
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
        HasAttr(name), true,
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
190
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
191

Y
Yu Yang 已提交
192 193
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
194

S
sneaxiy 已提交
195
  const OpInfo& Info() const {
196 197 198
    PADDLE_ENFORCE_NOT_NULL(
        info_, platform::errors::NotFound(
                   "OpInfo of operator (%s) is not found.", type_));
S
sneaxiy 已提交
199 200 201
    return *info_;
  }

202
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
203
  //! Get a input with argument's name described in `op_proto`
204
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
205
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
206
  const std::vector<std::string>& Inputs(const std::string& name) const;
207
  //! Get all inputs variable names
Q
qijun 已提交
208 209
  std::vector<std::string> InputVars() const;

210
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
211
  //! Get a output with argument's name described in `op_proto`
212
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
213 214
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
215
  const std::vector<std::string>& Outputs(const std::string& name) const;
216
  //! Get all outputs variable names
Y
Yu Yang 已提交
217
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
218

219
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
220

B
baojun-nervana 已提交
221
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
222 223
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
224

Z
Zhang Ting 已提交
225 226 227 228 229
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
230
 protected:
Q
Qiao Longfei 已提交
231
  std::string type_;
D
dongzhihong 已提交
232
  // NOTE: in case of OpGrad, inputs_ contains:
233
  // I (Inputs)
D
dongzhihong 已提交
234 235
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
236
  VariableNameMap inputs_;
Y
Yu Yang 已提交
237

D
dongzhihong 已提交
238 239
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
240
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
241
  AttributeMap attrs_;
S
sneaxiy 已提交
242 243 244 245

  // OpInfo
  const OpInfo* info_;

246 247
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
248 249 250 251

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
252 253
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
254 255
};

256
class ExecutionContext {
Y
Yan Chunwei 已提交
257
 public:
258
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
259
                   const platform::DeviceContext& device_context,
260 261
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
262
  virtual ~ExecutionContext() {}
263

H
hong 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
284 285 286

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
287
  template <typename T>
Y
Yu Yang 已提交
288
  inline const T& Attr(const std::string& name) const {
289
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
290 291
  }

H
hong 已提交
292 293 294
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
295

H
hong 已提交
296
  virtual bool HasInput(const std::string& name) const;
297

H
hong 已提交
298
  virtual bool HasOutput(const std::string& name) const;
299

H
hong 已提交
300
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
301
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
302 303
  }

H
hong 已提交
304
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
305
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
306 307
  }

H
hong 已提交
308
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
309

H
hong 已提交
310
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
311

H
hong 已提交
312
  virtual const std::vector<Variable*> MultiInputVar(
313
      const std::string& name) const {
314 315
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
316 317 318 319
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
320
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
321 322
  }

H
hong 已提交
323
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
324 325 326 327 328 329 330
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
331 332 333 334 335 336 337 338 339 340 341
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

342 343
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
344
    auto* var = InputVar(name);
345
    return var == nullptr ? nullptr : &var->Get<T>();
346 347 348 349
  }

  template <typename T>
  T* Output(const std::string& name) const {
350
    auto var = OutputVar(name);
351
    return var == nullptr ? nullptr : var->GetMutable<T>();
352 353 354 355
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
356 357
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
358 359
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
360 361 362 363 364
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
365
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
366 367 368 369 370 371 372
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
373 374 375
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
376 377
      return {};
    }
H
hong 已提交
378

X
Xin Pan 已提交
379 380 381 382 383 384
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
385

X
Xin Pan 已提交
386 387 388
    return res;
  }

389
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
390

Q
QI JUN 已提交
391 392 393 394 395
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

396
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
397
    return device_context_;
Q
qijun 已提交
398
  }
Q
qijun 已提交
399

400
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
QI JUN 已提交
401
  const inline platform::CUDADeviceContext& cuda_device_context() const {
402 403 404
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
Q
QI JUN 已提交
405 406 407 408 409
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
410 411 412
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
413
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
414 415
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
416 417
    auto shared_allocation =
        std::shared_ptr<pten::Allocation>(allocation_ptr, deleter);
X
Xin Pan 已提交
418

419
    PADDLE_ENFORCE_GE(
420
        allocation_ptr->size(), pten::product(dim) * sizeof(T),
421 422 423
        platform::errors::PreconditionNotMet(
            "The data memory size(%d) is less than the tensor needed memory "
            "size(%d).",
424
            allocation_ptr->size(), pten::product(dim) * sizeof(T)));
X
Xin Pan 已提交
425

426 427
    paddle::framework::Tensor temp_tensor(framework::TransToPtenDataType(
        framework::ToDataType(std::type_index(typeid(T)))));
X
Xin Pan 已提交
428 429 430 431 432
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
433 434 435
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
436
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
437

438
 private:
439 440
  const OperatorBase& op_;
  const Scope& scope_;
441
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
442
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
443 444
};

445 446 447 448 449 450 451 452 453 454 455 456 457 458
// TODO(chenweihang): split impl based OpProto or Dygraph if needed
class ExecutionArgumentMappingContext : public pten::ArgumentMappingContext {
 public:
  explicit ExecutionArgumentMappingContext(const ExecutionContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

459 460 461 462
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

463 464 465
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.GetAttr(name);
    return GetAttrValue(attr);
466 467 468
  }

  size_t InputSize(const std::string& name) const override {
469
    return ctx_.MultiInputVar(name).size();
470 471 472
  }

  size_t OutputSize(const std::string& name) const override {
473
    return ctx_.MultiOutputVar(name).size();
474 475 476
  }

  bool IsDenseTensorInput(const std::string& name) const override {
477
    return ctx_.InputVar(name)->IsType<framework::LoDTensor>();
478 479 480
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
481
    return ctx_.InputVar(name)->IsType<pten::SelectedRows>();
482 483
  }

484 485 486 487 488 489 490 491
  bool IsDenseTensorOutput(const std::string& name) const override {
    return ctx_.OutputVar(name)->IsType<framework::LoDTensor>();
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    return ctx_.OutputVar(name)->IsType<pten::SelectedRows>();
  }

492 493 494 495
 private:
  const ExecutionContext& ctx_;
};

496 497 498 499 500 501 502 503
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
504
class OpKernelBase {
Q
qijun 已提交
505
 public:
Q
qijun 已提交
506
  /**
507
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
508 509
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
510
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
511 512
   */

513
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
514

Y
Yu Yang 已提交
515 516 517 518 519 520 521
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
522 523
};

Y
Yu Yang 已提交
524 525
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
526
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
527
  using OpKernelMap =
Y
yuyang18 已提交
528
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
529

Y
Yu Yang 已提交
530 531
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
532 533
      : OperatorBase(type, inputs, outputs, attrs) {}

C
chentianyu03 已提交
534
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
535
  AllOpKernels() {
C
chentianyu03 已提交
536
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
537
    return g_all_op_kernels;
Y
Yu Yang 已提交
538
  }
Y
Yan Chunwei 已提交
539

540
  bool SupportGPU() const override {
541 542
    auto pten_kernels = pten::KernelFactory::Instance().SelectKernelMap(
        pten::TransToPtenKernelName(type_));
543 544 545 546 547
    auto has_pten_kernel =
        std::any_of(pten_kernels.begin(), pten_kernels.end(),
                    [](pten::KernelKeyMap::const_reference kern_pair) {
                      return kern_pair.first.backend() == pten::Backend::GPU;
                    });
548 549 550 551 552 553 554 555 556 557
    if (has_pten_kernel) {
      return true;
    } else {
      auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
558
  }
559

B
Baibaifan 已提交
560
  bool SupportNPU() const override {
561
    // TODO(zhiqiu): support pten if needed?
B
Baibaifan 已提交
562 563 564 565 566 567
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_npu_place(kern_pair.first.place_);
                       });
  }
F
fwenguang 已提交
568
  bool SupportMLU() const override {
569
    // TODO(zhiqiu): support pten if needed?
F
fwenguang 已提交
570 571 572 573 574 575
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_mlu_place(kern_pair.first.place_);
                       });
  }
576
  bool SupportsMKLDNN(proto::VarType::Type data_type) const;
577

578 579
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
580

581
  virtual void InferShape(InferShapeContext* ctx) const;
Y
Yu Yang 已提交
582

X
Xin Pan 已提交
583 584
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
585

586 587 588
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

589 590 591 592
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
      const ExecutionContext& ctx, const std::string& name1,
      const std::string& name2) const;

593
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
594

595 596
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
597 598 599
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
600

601 602
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
603 604 605
    return kernel_type_->place_;
  }

606 607 608 609 610 611 612 613
  /* member functions for adapting to pten lib */
  /** In the Tensor calculation library, the new Kernel adopts a clearer and
    * more streamlined design. The arguments of the Kernel and the input and
    * output arguments registered in the original OpMaker do not match in some
    * cases, so we use map to record the arguments required by the kernel.
    * When selecting Kernel during Op execution, select the arguments of the
    * original Op according to the GetExpectedPtenKernelArgs returned arguments.
    */
614
  pten::KernelSignature GetExpectedPtenKernelArgs(
615 616
      const ExecutionContext& ctx) const;

617
  /* member functions for adapting to pten lib */
618
  pten::KernelKey ChoosePtenKernel(const ExecutionContext& ctx) const;
619

620 621 622 623 624
  /**
   * Transfer data place for pten kernel
   * Is this really needed?
   */
  Scope* PreparePtenData(const Scope& scope, const pten::Kernel& pt_kernel,
625
                         const pten::KernelSignature& pt_kernel_signature,
626 627
                         RuntimeContext* ctx) const;

628
  void BuildPtenKernelContext(const RuntimeContext& ctx,
629 630
                              platform::DeviceContext* dev_ctx,
                              pten::KernelContext* pt_kernel_context) const;
631

632 633 634 635
  pten::KernelSignature* PtenKernelSignature() const {
    return pt_kernel_signature_.get();
  }

636 637
  pten::Kernel* PtenKernel() const { return pt_kernel_.get(); }

638 639 640 641
  void ResetPtenKernel(pten::Kernel* kernel) const {
    return pt_kernel_.reset(kernel);
  }

642 643
  const OpKernelType* kernel_type() const { return kernel_type_.get(); }

Y
Yu Yang 已提交
644
 private:
645
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
646 647
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
648 649

  /**
T
tianshuo78520a 已提交
650 651
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
652 653 654 655
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
656 657 658 659
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
660 661 662 663

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
664

665 666 667
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

  void ChooseKernel(const ExecutionContext& ctx) const;
L
Liu Yiqun 已提交
668

669 670 671
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

672 673 674 675 676
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
677 678 679
  void ParseInputDataType(const std::vector<Variable*>& vars,
                          const std::string& name,
                          proto::VarType::Type* data_type) const;
680 681 682 683
  // used for IndicateOrPromoteVarDataTypes
  Tensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                   const std::string& name) const;

684
 protected:
L
Liu Yiqun 已提交
685 686
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
687 688
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
689
  mutable bool need_prepare_data_ = true;
690 691
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
692
  mutable std::mutex cache_update_mutex_;
693
  mutable bool enable_cache_transfer_scope_ = false;
694 695 696 697
  // NOTE(chenweihang): Similar op members are used to adapt to
  // new pten kernel, if there is a better design in the future,
  // we may polish the implementation here
  mutable bool run_pten_kernel_ = false;
L
Liu-xiandong 已提交
698
  mutable bool run_kp_kernel = false;
699
  mutable std::unique_ptr<pten::KernelSignature> pt_kernel_signature_;
700
  mutable std::unique_ptr<pten::Kernel> pt_kernel_;
Q
Qiao Longfei 已提交
701 702
};

Y
Yu Yang 已提交
703 704
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
705 706
}  // namespace framework
}  // namespace paddle