clip.py 36.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

F
fengjiayi 已提交
17
import copy
18
import six
19
import warnings
F
fengjiayi 已提交
20

Y
Yu Yang 已提交
21
import functools
22 23
from . import layers
from . import framework
F
fengjiayi 已提交
24
from . import core
C
Chengmo 已提交
25
from . import name_scope
26
from .dygraph import base as imperative_base
Y
Yu Yang 已提交
27

F
fengjiayi 已提交
28
__all__ = [
29 30
    'set_gradient_clip', 'ErrorClipByValue', 'GradientClipByValue',
    'GradientClipByNorm', 'GradientClipByGlobalNorm'
F
fengjiayi 已提交
31
]
Y
Yu Yang 已提交
32 33


F
fengjiayi 已提交
34
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
35 36 37
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
38
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
39 40 41 42
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
43 44 45
    """
    Clips tensor values to the range [min, max].

46 47
    Given a tensor ``t`` (see Examples below), this operation clips its value \
    to ``min`` and ``max`` inplace.
48 49 50 51 52 53 54

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
55
        will be set to ``-max`` by framework.
56 57 58 59

    Examples:
        .. code-block:: python

60 61 62 63 64 65
            import paddle.fluid as fluid
            BATCH_SIZE = 128
            CLIP_MAX = 2e-6
            CLIP_MIN = -1e-6
            prog = fluid.framework.Program()
            with fluid.program_guard(main_program=prog):
C
Chengmo 已提交
66 67
                image = fluid.layers.data(
                    name='x', shape=[784], dtype='float32')
68 69
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
C
Chengmo 已提交
70 71
                predict = fluid.layers.fc(
                    input=hidden2, size=10, act='softmax')
72 73 74 75 76 77 78
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            prog_clip.block(0).var(hidden1.name)._set_error_clip(
                fluid.clip.ErrorClipByValue(
                    max=CLIP_MAX, min=CLIP_MIN)
79 80
    """

F
fengjiayi 已提交
81 82 83 84 85 86 87 88 89
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
90 91 92
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
93
    def _append_clip_op(self, block, grad_name):
94 95 96 97
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
98 99
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
100 101 102 103 104 105


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
106
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
107
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
108
        error_clip = getattr(fwd_var, "error_clip", None)
F
fengjiayi 已提交
109 110 111 112 113
        if not (error_clip is None or isinstance(error_clip,
                                                 BaseErrorClipAttr)):
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
114
        if error_clip is not None:
Y
yuyang18 已提交
115
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
116 117


118 119 120 121 122 123 124 125 126 127 128
class GradientClipBase(object):
    def __init__(self, need_clip=None):
        if need_clip is not None and not callable(need_clip):
            raise TypeError(
                "The type of need_clip must be funciton, and it can filter out "
                "parameter that does't need gradient clip. This function must return "
                "True or False, and True means that clipping is required. Please refer to "
                "API documention of GradientClipByGlobalNorm / GradientClipByNorm "
                "/GradientClipByValue.")
        self._need_clip_func = need_clip

F
fengjiayi 已提交
129 130 131
    def __str__(self):
        raise NotImplementedError()

132 133 134
    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
135

136 137
    def _static_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
138

139 140 141 142 143 144 145 146
    def __call__(self, params_grads):
        if framework.in_dygraph_mode():
            return self._dygraph_clip(params_grads)
        else:
            for p, g in params_grads:
                if getattr(p, 'gradient_clip_attr', None) is not None:
                    warnings.warn(
                        "'set_gradient_clip' will be ineffective, because you have "
147
                        "set 'grad_clip' in 'optimizer'. So, 'set_gradient_clip' "
148 149 150
                        "is redundant and you can remove it.")
                    break
            return self._static_clip(params_grads)
F
fengjiayi 已提交
151

Y
yuyang18 已提交
152
    def _process_context(self, context, param, grad):
153
        raise NotImplementedError()
Y
Yu Yang 已提交
154

Y
yuyang18 已提交
155
    def _create_operators(self, param, grad):
156
        raise NotImplementedError()
Y
Yu Yang 已提交
157 158


159
class GradientClipByValue(GradientClipBase):
160
    """
161 162
    Limit the value of multi-dimensional Tensor :math:`X` to the range [min, max].
    
163
    - Any values less than min are set to ``min``.
164
    
165
    - Any values greater than max are set to ``max``.
166

167 168 169
    The multi-dimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
170
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
171 172
    (for example: :ref:`api_fluid_optimizer_SGDOptimizer`).
    
173 174
    Args:
        max (float): The maximum value to clip by.
175 176 177 178 179
        min (float, optional): The minimum value to clip by. if not set by user, it will be set to ``-max`` 
            automatically. In this case, ``max`` must be greater than 0.
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
180 181 182

    Examples:
        .. code-block:: python
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        
            # use for Static mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np
                        
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(
                    main_program=main_prog, startup_program=startup_prog):
                image = fluid.data(
                    name='x', shape=[-1, 2], dtype='float32')
                predict = fluid.layers.fc(input=image, size=3, act='relu') # Trainable parameters: fc_0.w.0, fc_0.b.0
                loss = fluid.layers.mean(predict)
                
                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByValue(min=-1, max=1)
                
                # Clip a part of parameters in network: (e.g. fc_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a Parameter, and return bool
                # def fileter_func(Parameter):
                # # It can be easily filtered by Parameter.name (name can be set in fluid.ParamAttr, and the default name is fc_0.w_0, fc_0.b_0)
                #   return Parameter.name=="fc_0.w_0"
                # clip = fluid.clip.GradientClipByValue(min=-1, max=1, need_clip=fileter_func)

208 209
                sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1, grad_clip=clip)
                sgd_optimizer.minimize(loss)
210 211 212 213 214 215 216

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x = np.random.uniform(-100, 100, (10, 2)).astype('float32')
            exe.run(startup_prog)
            out = exe.run(main_prog, feed={'x': x}, fetch_list=loss)
        
217

218 219
            # use for Dygraph mode
            import paddle
220
            import paddle.fluid as fluid
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            
            with fluid.dygraph.guard():
                linear = fluid.dygraph.Linear(10, 10)  # Trainable parameters:: linear_0.w.0, linear_0.b.0
                inputs = fluid.layers.uniform_random([32, 10]).astype('float32')
                out = linear(fluid.dygraph.to_variable(inputs))
                loss = fluid.layers.reduce_mean(out)
                loss.backward()

                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByValue(min=-1, max=1)

                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(ParamBase):
                # # It can be easily filtered by ParamBase.name(name can be set in fluid.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
                #   return ParamBase.name == "linear_0.w_0"
                # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
                #   return ParamBase.name == linear.weight.name
                # clip = fluid.clip.GradientClipByValue(min=-1, max=1, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGD(
242 243
                    learning_rate=0.1, parameter_list=linear.parameters(), grad_clip=clip)
                sgd_optimizer.minimize(loss)
244 245
    """

246 247
    def __init__(self, max, min=None, need_clip=None):
        super(GradientClipByValue, self).__init__(need_clip)
Y
Yu Yang 已提交
248
        if min is None:
249
            assert (max > 0.0)
Y
Yu Yang 已提交
250
            min = -max
251 252
        self.max = float(max)
        self.min = float(min)
Y
Yu Yang 已提交
253

F
fengjiayi 已提交
254
    def __str__(self):
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        return "Gradient Clip By Value, min = %f, max=%f" % (self.min, self.max)

    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip(x=g, min=self.min, max=self.max)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
272
        param_new_grad_name_dict = dict()
273 274 275 276 277 278 279 280 281 282 283 284
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip(x=g, min=self.min, max=self.max)
                params_and_grads.append((p, new_grad))
285 286
                param_new_grad_name_dict[p.name] = new_grad.name
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
287
        return params_and_grads
F
fengjiayi 已提交
288

Y
yuyang18 已提交
289
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
290 291
        pass

Y
yuyang18 已提交
292
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
293 294 295 296
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


297
class GradientClipByNorm(GradientClipBase):
C
Chengmo 已提交
298
    """
299 300 301 302 303 304 305 306 307
    Limit the l2 norm of multi-dimensional Tensor :math:`X` to ``clip_norm`` .
    
    - If the l2 norm of :math:`X` is greater than ``clip_norm`` , :math:`X` will be compressed by a ratio.
    
    - If the l2 norm of :math:`X` is less than or equal to ``clip_norm`` , nothing will be done.
    
    The multidimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
308
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
309 310 311
    (for example: :ref:`api_fluid_optimizer_SGDOptimizer`).
    
    The clipping formula is:
312 313

    .. math::
314
        Out =
C
Chengmo 已提交
315 316 317 318 319 320
        \\left \{
        \\begin{aligned}
        & X & & if (norm(X) \\leq clip\_norm) \\\\
        & \\frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\\\
        \\end{aligned}
        \\right.
321 322 323 324


    where :math:`norm(X)` represents the L2 norm of :math:`X`.

325
    .. math::
C
Chengmo 已提交
326
        norm(X) = ( \\sum_{i=1}^{n}|x\_i|^2)^{ \\frac{1}{2}}
327

328
    Args:
329 330 331 332
        clip_norm(float): The maximum norm value.
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
C
Chengmo 已提交
333

334 335
    Examples:
        .. code-block:: python
336 337
        
            # use for Static mode
338
            import paddle
339 340 341 342 343
            import paddle.fluid as fluid
            import numpy as np
                        
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
344
            with fluid.program_guard(
345
                    main_program=main_prog, startup_program=startup_prog):
C
Chengmo 已提交
346
                image = fluid.data(
347 348 349 350 351 352 353 354 355 356 357 358 359 360
                    name='x', shape=[-1, 2], dtype='float32')
                predict = fluid.layers.fc(input=image, size=3, act='relu') # Trainable parameters: fc_0.w.0, fc_0.b.0
                loss = fluid.layers.mean(predict)
                
                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                
                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a Parameter, and return bool
                # def fileter_func(Parameter):
                # # It can be easily filtered by Parameter.name (name can be set in fluid.ParamAttr, and the default name is fc_0.w_0, fc_0.b_0)
                #   return Parameter.name=="fc_0.w_0"
                # clip = fluid.clip.GradientClipByNorm(clip_norm=1.0, need_clip=fileter_func)

361 362
                sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1, grad_clip=clip)
                sgd_optimizer.minimize(loss)
363 364

            place = fluid.CPUPlace()
365
            exe = fluid.Executor(place)
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
            x = np.random.uniform(-100, 100, (10, 2)).astype('float32')
            exe.run(startup_prog)
            out = exe.run(main_prog, feed={'x': x}, fetch_list=loss)
            


            # use for Dygraph mode
            import paddle
            import paddle.fluid as fluid
            
            with fluid.dygraph.guard():
                linear = fluid.dygraph.Linear(10, 10)  # Trainable: linear_0.w.0, linear_0.b.0
                inputs = fluid.layers.uniform_random([32, 10]).astype('float32')
                out = linear(fluid.dygraph.to_variable(inputs))
                loss = fluid.layers.reduce_mean(out)
                loss.backward()

                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByNorm(clip_norm=1.0)

                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(ParamBase):
                # # It can be easily filtered by ParamBase.name(name can be set in fluid.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
                #   return ParamBase.name == "linear_0.w_0"
                # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
                #   return ParamBase.name == linear.weight.name
                # clip = fluid.clip.GradientClipByNorm(clip_norm=1.0, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGD(
396 397
                    learning_rate=0.1, parameter_list=linear.parameters(), grad_clip=clip)
                sgd_optimizer.minimize(loss)
398 399 400

    """

401 402 403
    def __init__(self, clip_norm, need_clip=None):
        super(GradientClipByNorm, self).__init__(need_clip)
        self.clip_norm = float(clip_norm)
F
fengjiayi 已提交
404

F
fengjiayi 已提交
405
    def __str__(self):
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        return "Gradient Clip By Norm, clip_norm=%f" % self.clip_norm

    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        with framework.name_scope('gradient_clip'):
424
            param_new_grad_name_dict = dict()
425 426 427 428 429 430 431 432 433 434
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
435
                param_new_grad_name_dict[p.name] = new_grad.name
436
                params_and_grads.append((p, new_grad))
437
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
438
        return params_and_grads
F
fengjiayi 已提交
439

Y
yuyang18 已提交
440
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
441 442
        pass

Y
yuyang18 已提交
443
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
444 445 446 447
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


448
class GradientClipByGlobalNorm(GradientClipBase):
449
    """
450 451 452 453 454 455 456 457 458 459
    Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in 
    :math:`t\_list` , and limit it to ``clip_norm`` .
    
    - If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
    
    - If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
    
    The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
460
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
461 462 463
    (for example: :ref:`api_fluid_optimizer_SGDOptimizer`).

    The clipping formula is:
464 465 466 467 468 469 470 471 472 473 474 475

    .. math::

        t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    Args:
476 477 478 479 480
        clip_norm (float): The maximum norm value.
        group_name (str, optional): The group name for this clip. Default value is ``default_group``
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
481 482 483

    Examples:
        .. code-block:: python
484 485
        
            # use for Static mode
486
            import paddle
487 488 489 490 491
            import paddle.fluid as fluid
            import numpy as np
                        
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
492
            with fluid.program_guard(
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
                    main_program=main_prog, startup_program=startup_prog):
                image = fluid.data(
                    name='x', shape=[-1, 2], dtype='float32')
                predict = fluid.layers.fc(input=image, size=3, act='relu') # Trainable parameters: fc_0.w.0, fc_0.b.0
                loss = fluid.layers.mean(predict)
                
                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)
                
                # Clip a part of parameters in network: (e.g. fc_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(Parameter):
                # # It can be easily filtered by Parameter.name (name can be set in fluid.ParamAttr, and the default name is fc_0.w_0, fc_0.b_0)
                #   return Parameter.name=="fc_0.w_0"
                # clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0, need_clip=fileter_func)

509 510
                sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1, grad_clip=clip)
                sgd_optimizer.minimize(loss)
511 512 513 514 515 516

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x = np.random.uniform(-100, 100, (10, 2)).astype('float32')
            exe.run(startup_prog)
            out = exe.run(main_prog, feed={'x': x}, fetch_list=loss)
517

518

519 520 521
            # use for Dygraph mode
            import paddle
            import paddle.fluid as fluid
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
            with fluid.dygraph.guard():
                linear = fluid.dygraph.Linear(10, 10)  # Trainable: linear_0.w.0, linear_0.b.0
                inputs = fluid.layers.uniform_random([32, 10]).astype('float32')
                out = linear(fluid.dygraph.to_variable(inputs))
                loss = fluid.layers.reduce_mean(out)
                loss.backward()

                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)

                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(ParamBase):
                # # It can be easily filtered by ParamBase.name(name can be set in fluid.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
                #   return ParamBase.name == "linear_0.w_0"
                # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
                #   return ParamBase.name == linear.weight.name
                # clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGD(
543 544
                    learning_rate=0.1, parameter_list=linear.parameters(), grad_clip=clip)
                sgd_optimizer.minimize(loss)
545

546 547
    """

548 549 550
    def __init__(self, clip_norm, group_name="default_group", need_clip=None):
        super(GradientClipByGlobalNorm, self).__init__(need_clip)
        self.clip_norm = float(clip_norm)
F
update  
fengjiayi 已提交
551
        self.group_name = group_name
552

F
fengjiayi 已提交
553
    def __str__(self):
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
        return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)

    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                continue
            merge_grad = g
            if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
            square = layers.square(merge_grad)
            sum_square = layers.reduce_sum(square)
            sum_square_list.append(sum_square)

        # all parameters have been filterd out
        if len(sum_square_list) == 0:
            return params_grads

        global_norm_var = layers.concat(sum_square_list)
        global_norm_var = layers.reduce_sum(global_norm_var)
        global_norm_var = layers.sqrt(global_norm_var)
        max_global_norm = layers.fill_constant(
            shape=[1], dtype='float32', value=self.clip_norm)
        clip_var = layers.elementwise_div(
            x=max_global_norm,
            y=layers.elementwise_max(
                x=global_norm_var, y=max_global_norm))
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.elementwise_mul(x=g, y=clip_var)
            params_and_grads.append((p, new_grad))

        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    continue
                merge_grad = g
                with p.block.program._optimized_guard([p, g]):
                    if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                        merge_grad = layers.merge_selected_rows(g)
                        merge_grad = layers.get_tensor_from_selected_rows(
                            merge_grad)

                    square = layers.square(merge_grad)
                    sum_square = layers.reduce_sum(input=square)
                    sum_square_list.append(sum_square)

            # all parameters have been filterd out
            if len(sum_square_list) == 0:
                return params_grads

            with p.block.program._optimized_guard([p, g]):
                global_norm_var = layers.sums(sum_square_list)
                global_norm_var = layers.sqrt(x=global_norm_var)
                max_global_norm = layers.fill_constant(
                    shape=[1], dtype="float32", value=self.clip_norm)
                scale_var = layers.elementwise_div(
                    x=max_global_norm,
                    y=layers.elementwise_max(
                        x=max_global_norm, y=global_norm_var))

632
            param_new_grad_name_dict = dict()
633 634 635 636 637 638 639 640 641 642
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.elementwise_mul(x=g, y=scale_var)
643
                param_new_grad_name_dict[p.name] = new_grad.name
644 645
                params_and_grads.append((p, new_grad))

646
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
647
        return params_and_grads
F
fengjiayi 已提交
648

Y
yuyang18 已提交
649
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
650 651 652 653 654 655 656 657 658 659
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
                shape=[1], dtype="float32", value=self.clip_norm)
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
660

C
chengduo 已提交
661 662 663 664 665 666
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

        square = layers.square(merge_grad)
P
phlrain 已提交
667
        local_norm_var = layers.reduce_sum(input=square)
F
update  
fengjiayi 已提交
668
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
669

F
update  
fengjiayi 已提交
670
        self.context = context
671

Y
yuyang18 已提交
672
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
673 674 675
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
T
tensor-tang 已提交
676
            group_norm_var = layers.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
677 678 679
            clip_var = self.context[self.group_name + "_clip"]
            group_scale_var = layers.elementwise_div(
                x=clip_var,
F
fengjiayi 已提交
680
                y=layers.elementwise_max(
F
update  
fengjiayi 已提交
681
                    x=clip_var, y=group_norm_var))
682
            assert group_scale_var.shape == (1, )
F
update  
fengjiayi 已提交
683
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
684

F
update  
fengjiayi 已提交
685 686
        new_grad = layers.elementwise_mul(
            x=grad, y=self.context[group_scale_name])
C
chengduo 已提交
687

688
        return param, new_grad
F
fengjiayi 已提交
689 690


691
@framework.dygraph_not_support
F
fengjiayi 已提交
692
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
693
    """
694 695 696 697
    Warning:
    
        This API must be used after building network, and before ``minimize`` , 
        and it may be removed in future releases, so it is not recommended. 
698 699 700 701
        It is recommended to set ``grad_clip`` when initializing the ``optimizer`` ,
        this is a better method to clip gradient. There are three clipping strategies:
         :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
         :ref:`api_fluid_clip_GradientClipByValue` .
702
        
703 704 705
    To specify parameters that require gradient clip.

    Args:
706 707 708 709 710
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default value: None, and there is no 
            gradient clipping.
Z
Zeng Jinle 已提交
711
        param_list (list(Variable), optional): Parameters that require gradient clip.
712
                It can be a list of parameter or a list of parameter's name.
713
                Default None, meaning that all parameters in the program will be included.
Z
Zeng Jinle 已提交
714
        program (Program, optional): The program where parameters are located.
715 716 717 718 719 720 721
                Default None, meaning that using :ref:`api_fluid_default_main_program` .

    Returns:
        None

    Examples:
        .. code-block:: python
C
Chengmo 已提交
722

723 724 725
            import paddle.fluid as fluid

            def network():
C
Chengmo 已提交
726 727
                image = fluid.data(name='image', shape=[
                                   None, 28], dtype='float32')
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
                param_attr1 = fluid.ParamAttr("fc1_param")
                fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1)
                param_attr2 = fluid.ParamAttr("fc2_param")
                fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2)
                loss = fluid.layers.reduce_mean(fc2)
                return loss


            # network 1: clip all parameter gradient
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

            # network 2: clip parameter gradient by name
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=["fc1_param", "fc2_param"])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

753
            # network 3: clip parameter gradient by value
754 755 756 757 758 759 760 761 762
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                param_var1 = fluid.default_main_program().global_block().var("fc1_param")
                param_var2 = fluid.default_main_program().global_block().var("fc2_param")
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=[param_var1, param_var2])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
763
            
764
            # network 4: use 'set_gradient_clip' and 'optimize(grad_clip=clip)' together
765 766 767 768 769 770 771
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0)
                clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                # Set the gradient clipping strategy: clip1
                fluid.clip.set_gradient_clip(clip1)
                # Set the gradient clipping strategy: clip2
772 773
                sgd = fluid.optimizer.SGD(learning_rate=1e-3, grad_clip=clip2)
                sgd.minimize(loss)
774 775 776 777
                # 'set_gradient_clip' will not take effect when setting has a conflict, 
                # and the gradient clipping strategy will be 'clip2'
            
            
F
fengjiayi 已提交
778
    """
779 780
    warnings.warn("Caution! 'set_gradient_clip' is not recommended "
                  "and may be deprecated in future! "
781 782
                  "We recommend a new strategy: set 'grad_clip' "
                  "when initializing the 'optimizer'. "
783
                  "This method can reduce the mistakes, please "
784
                  "refer to documention of 'optimizer'.")
785 786

    if not isinstance(clip, GradientClipBase):
F
fengjiayi 已提交
787
        raise TypeError(
788
            "'clip' should be an instance of GradientClipBase's derived class")
F
fengjiayi 已提交
789 790
    if program is None:
        program = framework.default_main_program()
791 792 793 794 795 796 797 798 799 800

    for op in program.block(0).ops:
        if 'op_namescope' in op.all_attrs() and "optimizer" in op.attr(
                "op_namescope"):
            warnings.warn(
                "'minimize' has been invoked before, this will make 'set_gradient_clip' "
                "be ineffective! Please invoke 'set_gradient_clip' before 'minimize'."
            )
            break

F
fengjiayi 已提交
801 802
    if param_list is None:
        param_list = program.block(0).all_parameters()
803
    if all(isinstance(elem, six.string_types) for elem in param_list):
F
fengjiayi 已提交
804 805 806 807 808 809 810
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
811
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
812 813


814
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
815
    context = dict()
816 817 818
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
819
        with p.block.program._optimized_guard(
820 821
            [p, g]), framework.name_scope('gradient_clip_@CLIP'):
            clip_attr = getattr(p, 'gradient_clip_attr', None)
Y
yuyang18 已提交
822
            if clip_attr is None:
823 824
                return param_grads
            if not isinstance(clip_attr, GradientClipBase):
Y
yuyang18 已提交
825
                raise TypeError(
826
                    "clip attribute should be an instance of GradientClipBase")
Y
Yu Yang 已提交
827

Y
yuyang18 已提交
828
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
829 830

    res = []
831
    param_new_grad_name_dict = dict()
832 833 834
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
835
        with p.block.program._optimized_guard(
836
            [p, g]), framework.name_scope('graident_clip_@CLIP'):
837
            param, new_grad = clip_attr._create_operators(param=p, grad=g)
838
            param_new_grad_name_dict[param.name] = new_grad.name
839
            res.append([param, new_grad])
Y
Yu Yang 已提交
840

841
    _correct_clip_op_role_var(res, param_new_grad_name_dict)
842 843 844 845
    return res


# change wrong mapping relation between param & grad in clip op
846 847
# Note: This function is sensitive to the time cost of the network with gradient clipping 
# and should not be changed easily. If you must change, please test the time cost.
848 849 850 851
def _correct_clip_op_role_var(params_grads, param_new_grad_name_dict):
    block_id_list = []
    if len(param_new_grad_name_dict) == 0:
        return
852 853
    for param, grad in params_grads:
        if grad is None:
854
            continue
855 856 857 858
        block_id = param.block.idx
        if block_id in block_id_list:
            continue
        block_id_list.append(block_id)
859 860
        for op in param.block.program.global_block().ops:
            if 'op_namescope' in op.all_attrs() and "gradient_clip" in op.attr(
861 862 863 864 865 866
                    "op_namescope") and op.attr('op_role_var'):
                param_name = op.attr('op_role_var')[0]
                if param_name in param_new_grad_name_dict:
                    correct_p_g = [
                        param_name, param_new_grad_name_dict[param_name]
                    ]
C
Chengmo 已提交
867
                    op._set_attr('op_role_var', correct_p_g)
Y
Yu Yang 已提交
868 869 870


ClipByValue = GradientClipByValue
F
fengjiayi 已提交
871 872
ClipByNorm = GradientClipByNorm
ClipByGlobalNorm = GradientClipByGlobalNorm