clip.py 12.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

F
fengjiayi 已提交
17
import copy
18
import six
F
fengjiayi 已提交
19

Y
Yu Yang 已提交
20
import functools
21 22
from . import layers
from . import framework
F
fengjiayi 已提交
23
from . import core
Y
Yu Yang 已提交
24

F
fengjiayi 已提交
25
__all__ = [
26
    'ErrorClipByValue',
F
fengjiayi 已提交
27 28 29
    'GradientClipByValue',
    'GradientClipByNorm',
    'GradientClipByGlobalNorm',
F
fengjiayi 已提交
30
]
Y
Yu Yang 已提交
31 32


F
fengjiayi 已提交
33
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
34 35 36
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
37
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
38 39 40 41
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    """
    Clips tensor values to the range [min, max].

    Given a tensor t, this operation clips its value to min and max inplace.

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
        will be set to -max by framework.

    Examples:
        .. code-block:: python

            var = fluid.framework.Variable(..., error_clip=ErrorClipByValue(max=5.0), ...)
    """

F
fengjiayi 已提交
61 62 63 64 65 66 67 68 69
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
70 71 72
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
73
    def _append_clip_op(self, block, grad_name):
74 75 76 77
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
78 79
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
80 81 82 83 84 85


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
86
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
87
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
88
        error_clip = getattr(fwd_var, "error_clip", None)
F
fengjiayi 已提交
89 90 91 92 93
        if not (error_clip is None or isinstance(error_clip,
                                                 BaseErrorClipAttr)):
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
94
        if error_clip is not None:
Y
yuyang18 已提交
95
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
96 97


Y
Yu Yang 已提交
98
class BaseGradientClipAttr(object):
F
fengjiayi 已提交
99 100 101
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
102
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
103 104
        raise NotImplementedError()

Y
yuyang18 已提交
105
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
106 107 108 109
        raise NotImplementedError()


class NullGradientClipAttr(BaseGradientClipAttr):
F
fengjiayi 已提交
110 111 112
    def __str__(self):
        return "Null"

Y
yuyang18 已提交
113
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
114 115
        pass

Y
yuyang18 已提交
116
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
117 118 119 120
        return param, grad


class GradientClipByValue(BaseGradientClipAttr):
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    """
    Clips gradient values to the range [min, max].

    Given a tensor t, this operation clips its value to min and max inplace.

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
        will be set to -max by framework.

    Examples:
        .. code-block:: python

137
            import paddle.fluid as fluid
T
Tink_Y 已提交
138 139
            w_param_attrs = fluid.ParamAttr(name=None,
              initializer=fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0),
140
              learning_rate=1.0,
T
Tink_Y 已提交
141
              regularizer=fluid.regularizer.L1Decay(1.0),
142
              trainable=True,
143
              clip=fluid.clip.GradientClipByValue(1.0, -1.0))
144 145 146
            y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
147 148 149 150 151 152 153 154 155
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
156 157 158
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
159
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
160 161
        pass

Y
yuyang18 已提交
162
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
163 164 165 166
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


F
fengjiayi 已提交
167
class GradientClipByNorm(BaseGradientClipAttr):
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    """
    Clips tensor values to a maximum L2-norm.

    This operator limits the L2 norm of the input :math:`X` within :math:`max\_norm`.
    If the L2 norm of :math:`X` is less than or equal to :math:`max\_norm`, :math:`Out`
    will be the same as :math:`X`. If the L2 norm of :math:`X` is greater than
    :math:`max\_norm`, :math:`X` will be linearly scaled to make the L2 norm of
    :math:`Out` equal to :math:`max\_norm`, as shown in the following formula:

    .. math::

        Out = \\frac{max\_norm * X}{norm(X)},

    where :math:`norm(X)` represents the L2 norm of :math:`X`.

    Args:
        clip_norm (float): The maximum norm value

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
189 190
            w_param_attrs = flui.ParamAttr(name=None,
              initializer=fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0),
191
              learning_rate=1.0,
T
Tink_Y 已提交
192
              regularizer=fluid.regularizer.L1Decay(1.0),
193
              trainable=True,
T
Tink_Y 已提交
194
              clip=fluid.clip.GradientClipByNorm(clip_norm=2.0))
195 196 197 198
            y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)

    """

F
fengjiayi 已提交
199 200 201
    def __init__(self, clip_norm):
        self.clip_norm = clip_norm

F
fengjiayi 已提交
202 203 204
    def __str__(self):
        return "ByNorm, clip_norm=%f" % self.clip_norm

Y
yuyang18 已提交
205
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
206 207
        pass

Y
yuyang18 已提交
208
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
209 210 211 212
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


F
fengjiayi 已提交
213
class GradientClipByGlobalNorm(BaseGradientClipAttr):
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    """
    Clips values of multiple tensors by the ratio of the sum of their norms.

    Given a list of tensors t_list, and a clipping ratio clip_norm, this
    operation returns a list of clipped tensors list_clipped and the global
    norm (global_norm) of all tensors in t_list.

    To perform the clipping, the values :math:`t\_list[i]` are set to:

    .. math::

        t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    If :math:`clip\_norm > global\_norm` then the entries in t_list remain as they are,
    otherwise they're all shrunk by the global ratio.

    Args:
        clip_norm (float): The maximum norm value
        group_name (str, optional): The group name for this clip.

    Examples:
        .. code-block:: python

            p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

            with fluid.program_guard(main_program=prog_clip):
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)

    """

F
update  
fengjiayi 已提交
252
    def __init__(self, clip_norm, group_name="default_group"):
253 254
        if not isinstance(group_name, six.string_types):
            raise TypeError("'group_name' must be a %s." % (six.string_types))
F
update  
fengjiayi 已提交
255 256 257

        self.clip_norm = clip_norm
        self.group_name = group_name
258

F
fengjiayi 已提交
259 260 261 262
    def __str__(self):
        return "ByGlobalNorm, group_name=%s, clip_norm=%f" % (self.group_name,
                                                              self.clip_norm)

Y
yuyang18 已提交
263
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
264 265 266 267 268 269 270 271 272 273
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
                shape=[1], dtype="float32", value=self.clip_norm)
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
274

C
chengduo 已提交
275 276 277 278 279 280
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

        square = layers.square(merge_grad)
P
phlrain 已提交
281
        local_norm_var = layers.reduce_sum(input=square)
F
update  
fengjiayi 已提交
282
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
283

F
update  
fengjiayi 已提交
284
        self.context = context
285

Y
yuyang18 已提交
286
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
287 288 289
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
T
tensor-tang 已提交
290
            group_norm_var = layers.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
291 292 293
            clip_var = self.context[self.group_name + "_clip"]
            group_scale_var = layers.elementwise_div(
                x=clip_var,
F
fengjiayi 已提交
294
                y=layers.elementwise_max(
F
update  
fengjiayi 已提交
295
                    x=clip_var, y=group_norm_var))
296
            assert group_scale_var.shape == (1, )
F
update  
fengjiayi 已提交
297
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
298

F
update  
fengjiayi 已提交
299 300
        new_grad = layers.elementwise_mul(
            x=grad, y=self.context[group_scale_name])
C
chengduo 已提交
301

302
        return param, new_grad
F
fengjiayi 已提交
303 304


F
fengjiayi 已提交
305
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
306
    """
307 308 309 310 311 312 313 314 315 316
    To specify parameters that require gradient clip.

    Args:
        clip(BaseGradientClipAttr): An instance of some derived class of BaseGradientClipAttr,
                which describes the type and detailed attributes of required gradient clip.
        param_list(list(Variable)): Parameters that require gradient clip.
                It can be a list of parameter or a list of parameter's name.
                When it's None, all parameters in the program will be included.
        program(Program): The program where parameters are.
                Will be the default main program when assigned with None.
F
fengjiayi 已提交
317
    """
F
fengjiayi 已提交
318 319 320 321
    if not isinstance(clip, BaseGradientClipAttr):
        raise TypeError(
            "'clip' should be an instance of BaseGradientClipAttr's derived class"
        )
F
fengjiayi 已提交
322 323 324 325
    if program is None:
        program = framework.default_main_program()
    if param_list is None:
        param_list = program.block(0).all_parameters()
326
    if all(isinstance(elem, six.string_types) for elem in param_list):
F
fengjiayi 已提交
327 328 329 330 331 332 333
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
334
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
335 336


337
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
338
    context = dict()
339 340 341
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
342 343
        with p.block.program._optimized_guard(
            [p, g]), framework.name_scope('append_clip'):
Y
yuyang18 已提交
344 345 346 347 348 349 350
            clip_attr = getattr(p, 'gradient_clip_attr', NullGradientClipAttr())
            if clip_attr is None:
                clip_attr = NullGradientClipAttr()
            if not isinstance(clip_attr, BaseGradientClipAttr):
                raise TypeError(
                    "clip attribute should be an instance of BaseGradientClipAttr"
                )
Y
Yu Yang 已提交
351

Y
yuyang18 已提交
352
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
353 354

    res = []
355 356 357
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
358 359
        with p.block.program._optimized_guard(
            [p, g]), framework.name_scope('append_graident_clip'):
Y
yuyang18 已提交
360
            res.append(clip_attr._create_operators(param=p, grad=g))
Y
Yu Yang 已提交
361

Y
yuyang18 已提交
362
    return res
Y
Yu Yang 已提交
363 364 365


ClipByValue = GradientClipByValue
F
fengjiayi 已提交
366 367
ClipByNorm = GradientClipByNorm
ClipByGlobalNorm = GradientClipByGlobalNorm