clip.py 36.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

F
fengjiayi 已提交
17
import copy
18
import six
19
import warnings
F
fengjiayi 已提交
20

Y
Yu Yang 已提交
21
import functools
22 23
from . import layers
from . import framework
F
fengjiayi 已提交
24
from . import core
C
Chengmo 已提交
25
from . import name_scope
26
from .dygraph import base as imperative_base
Y
Yu Yang 已提交
27

F
fengjiayi 已提交
28
__all__ = [
29 30
    'set_gradient_clip', 'ErrorClipByValue', 'GradientClipByValue',
    'GradientClipByNorm', 'GradientClipByGlobalNorm'
F
fengjiayi 已提交
31
]
Y
Yu Yang 已提交
32 33


F
fengjiayi 已提交
34
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
35 36 37
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
38
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
39 40 41 42
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
43 44 45
    """
    Clips tensor values to the range [min, max].

46 47
    Given a tensor ``t`` (see Examples below), this operation clips its value \
    to ``min`` and ``max`` inplace.
48 49 50 51 52 53 54

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
55
        will be set to ``-max`` by framework.
56 57 58 59

    Examples:
        .. code-block:: python

60 61 62 63 64 65
            import paddle.fluid as fluid
            BATCH_SIZE = 128
            CLIP_MAX = 2e-6
            CLIP_MIN = -1e-6
            prog = fluid.framework.Program()
            with fluid.program_guard(main_program=prog):
C
Chengmo 已提交
66 67
                image = fluid.layers.data(
                    name='x', shape=[784], dtype='float32')
68 69
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
C
Chengmo 已提交
70 71
                predict = fluid.layers.fc(
                    input=hidden2, size=10, act='softmax')
72 73 74 75 76 77 78
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            prog_clip.block(0).var(hidden1.name)._set_error_clip(
                fluid.clip.ErrorClipByValue(
                    max=CLIP_MAX, min=CLIP_MIN)
79 80
    """

F
fengjiayi 已提交
81 82 83 84 85 86 87 88 89
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
90 91 92
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
93
    def _append_clip_op(self, block, grad_name):
94 95 96 97
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
98 99
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
100 101 102 103 104 105


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
106
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
107
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
108
        error_clip = getattr(fwd_var, "error_clip", None)
F
fengjiayi 已提交
109 110 111 112 113
        if not (error_clip is None or isinstance(error_clip,
                                                 BaseErrorClipAttr)):
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
114
        if error_clip is not None:
Y
yuyang18 已提交
115
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
116 117


118 119 120 121 122 123 124 125 126 127 128
class GradientClipBase(object):
    def __init__(self, need_clip=None):
        if need_clip is not None and not callable(need_clip):
            raise TypeError(
                "The type of need_clip must be funciton, and it can filter out "
                "parameter that does't need gradient clip. This function must return "
                "True or False, and True means that clipping is required. Please refer to "
                "API documention of GradientClipByGlobalNorm / GradientClipByNorm "
                "/GradientClipByValue.")
        self._need_clip_func = need_clip

F
fengjiayi 已提交
129 130 131
    def __str__(self):
        raise NotImplementedError()

132 133 134
    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
135

136 137
    def _static_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def __call__(self, params_grads):
        assert len(
            params_grads
        ) > 0, "The number of trainable parameters should be greater than 0."
        if framework.in_dygraph_mode():
            return self._dygraph_clip(params_grads)
        else:
            for p, g in params_grads:
                if getattr(p, 'gradient_clip_attr', None) is not None:
                    warnings.warn(
                        "'set_gradient_clip' will be ineffective, because you have "
                        "pass 'grad_clip' into 'minimize'. So, 'set_gradient_clip' "
                        "is redundant and you can remove it.")
                    break
            return self._static_clip(params_grads)
F
fengjiayi 已提交
154

Y
yuyang18 已提交
155
    def _process_context(self, context, param, grad):
156
        raise NotImplementedError()
Y
Yu Yang 已提交
157

Y
yuyang18 已提交
158
    def _create_operators(self, param, grad):
159
        raise NotImplementedError()
Y
Yu Yang 已提交
160 161


162
class GradientClipByValue(GradientClipBase):
163
    """
164 165
    Limit the value of multi-dimensional Tensor :math:`X` to the range [min, max].
    
166
    - Any values less than min are set to ``min``.
167
    
168
    - Any values greater than max are set to ``max``.
169

170 171 172 173 174 175
    The multi-dimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
    Gradient clip will takes effect after being set in ``optimizer.minimize(grad_clip)`` , see the document ``optimizer`` 
    (for example: :ref:`api_fluid_optimizer_SGDOptimizer`).
    
176 177
    Args:
        max (float): The maximum value to clip by.
178 179 180 181 182
        min (float, optional): The minimum value to clip by. if not set by user, it will be set to ``-max`` 
            automatically. In this case, ``max`` must be greater than 0.
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
183 184 185

    Examples:
        .. code-block:: python
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        
            # use for Static mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np
                        
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(
                    main_program=main_prog, startup_program=startup_prog):
                image = fluid.data(
                    name='x', shape=[-1, 2], dtype='float32')
                predict = fluid.layers.fc(input=image, size=3, act='relu') # Trainable parameters: fc_0.w.0, fc_0.b.0
                loss = fluid.layers.mean(predict)
                
                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByValue(min=-1, max=1)
                
                # Clip a part of parameters in network: (e.g. fc_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a Parameter, and return bool
                # def fileter_func(Parameter):
                # # It can be easily filtered by Parameter.name (name can be set in fluid.ParamAttr, and the default name is fc_0.w_0, fc_0.b_0)
                #   return Parameter.name=="fc_0.w_0"
                # clip = fluid.clip.GradientClipByValue(min=-1, max=1, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1)
                sgd_optimizer.minimize(loss, grad_clip=clip)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x = np.random.uniform(-100, 100, (10, 2)).astype('float32')
            exe.run(startup_prog)
            out = exe.run(main_prog, feed={'x': x}, fetch_list=loss)
        
220

221 222
            # use for Dygraph mode
            import paddle
223
            import paddle.fluid as fluid
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
            
            with fluid.dygraph.guard():
                linear = fluid.dygraph.Linear(10, 10)  # Trainable parameters:: linear_0.w.0, linear_0.b.0
                inputs = fluid.layers.uniform_random([32, 10]).astype('float32')
                out = linear(fluid.dygraph.to_variable(inputs))
                loss = fluid.layers.reduce_mean(out)
                loss.backward()

                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByValue(min=-1, max=1)

                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(ParamBase):
                # # It can be easily filtered by ParamBase.name(name can be set in fluid.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
                #   return ParamBase.name == "linear_0.w_0"
                # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
                #   return ParamBase.name == linear.weight.name
                # clip = fluid.clip.GradientClipByValue(min=-1, max=1, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGD(
                    learning_rate=0.1, parameter_list=linear.parameters())
                sgd_optimizer.minimize(loss, grad_clip=clip)
247 248
    """

249 250
    def __init__(self, max, min=None, need_clip=None):
        super(GradientClipByValue, self).__init__(need_clip)
Y
Yu Yang 已提交
251
        if min is None:
252
            assert (max > 0.0)
Y
Yu Yang 已提交
253
            min = -max
254 255
        self.max = float(max)
        self.min = float(min)
Y
Yu Yang 已提交
256

F
fengjiayi 已提交
257
    def __str__(self):
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        return "Gradient Clip By Value, min = %f, max=%f" % (self.min, self.max)

    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip(x=g, min=self.min, max=self.max)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip(x=g, min=self.min, max=self.max)
                params_and_grads.append((p, new_grad))
        _correct_clip_op_role_var(params_and_grads)
        return params_and_grads
F
fengjiayi 已提交
289

Y
yuyang18 已提交
290
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
291 292
        pass

Y
yuyang18 已提交
293
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
294 295 296 297
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


298
class GradientClipByNorm(GradientClipBase):
C
Chengmo 已提交
299
    """
300 301 302 303 304 305 306 307 308 309 310 311 312
    Limit the l2 norm of multi-dimensional Tensor :math:`X` to ``clip_norm`` .
    
    - If the l2 norm of :math:`X` is greater than ``clip_norm`` , :math:`X` will be compressed by a ratio.
    
    - If the l2 norm of :math:`X` is less than or equal to ``clip_norm`` , nothing will be done.
    
    The multidimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
    Gradient clip will takes effect after being set in ``optimizer.minimize(grad_clip)`` , see the document ``optimizer`` 
    (for example: :ref:`api_fluid_optimizer_SGDOptimizer`).
    
    The clipping formula is:
313 314

    .. math::
315
        Out =
C
Chengmo 已提交
316 317 318 319 320 321
        \\left \{
        \\begin{aligned}
        & X & & if (norm(X) \\leq clip\_norm) \\\\
        & \\frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\\\
        \\end{aligned}
        \\right.
322 323 324 325


    where :math:`norm(X)` represents the L2 norm of :math:`X`.

326
    .. math::
C
Chengmo 已提交
327
        norm(X) = ( \\sum_{i=1}^{n}|x\_i|^2)^{ \\frac{1}{2}}
328

329
    Args:
330 331 332 333
        clip_norm(float): The maximum norm value.
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
C
Chengmo 已提交
334

335 336
    Examples:
        .. code-block:: python
337 338
        
            # use for Static mode
339
            import paddle
340 341 342 343 344
            import paddle.fluid as fluid
            import numpy as np
                        
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
345
            with fluid.program_guard(
346
                    main_program=main_prog, startup_program=startup_prog):
C
Chengmo 已提交
347
                image = fluid.data(
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                    name='x', shape=[-1, 2], dtype='float32')
                predict = fluid.layers.fc(input=image, size=3, act='relu') # Trainable parameters: fc_0.w.0, fc_0.b.0
                loss = fluid.layers.mean(predict)
                
                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                
                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a Parameter, and return bool
                # def fileter_func(Parameter):
                # # It can be easily filtered by Parameter.name (name can be set in fluid.ParamAttr, and the default name is fc_0.w_0, fc_0.b_0)
                #   return Parameter.name=="fc_0.w_0"
                # clip = fluid.clip.GradientClipByNorm(clip_norm=1.0, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1)
                sgd_optimizer.minimize(loss, grad_clip=clip)

            place = fluid.CPUPlace()
366
            exe = fluid.Executor(place)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
            x = np.random.uniform(-100, 100, (10, 2)).astype('float32')
            exe.run(startup_prog)
            out = exe.run(main_prog, feed={'x': x}, fetch_list=loss)
            


            # use for Dygraph mode
            import paddle
            import paddle.fluid as fluid
            
            with fluid.dygraph.guard():
                linear = fluid.dygraph.Linear(10, 10)  # Trainable: linear_0.w.0, linear_0.b.0
                inputs = fluid.layers.uniform_random([32, 10]).astype('float32')
                out = linear(fluid.dygraph.to_variable(inputs))
                loss = fluid.layers.reduce_mean(out)
                loss.backward()

                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByNorm(clip_norm=1.0)

                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(ParamBase):
                # # It can be easily filtered by ParamBase.name(name can be set in fluid.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
                #   return ParamBase.name == "linear_0.w_0"
                # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
                #   return ParamBase.name == linear.weight.name
                # clip = fluid.clip.GradientClipByNorm(clip_norm=1.0, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGD(
                    learning_rate=0.1, parameter_list=linear.parameters())
                sgd_optimizer.minimize(loss, grad_clip=clip)
399 400 401

    """

402 403 404
    def __init__(self, clip_norm, need_clip=None):
        super(GradientClipByNorm, self).__init__(need_clip)
        self.clip_norm = float(clip_norm)
F
fengjiayi 已提交
405

F
fengjiayi 已提交
406
    def __str__(self):
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
        return "Gradient Clip By Norm, clip_norm=%f" % self.clip_norm

    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
                params_and_grads.append((p, new_grad))
        _correct_clip_op_role_var(params_and_grads)
        return params_and_grads
F
fengjiayi 已提交
438

Y
yuyang18 已提交
439
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
440 441
        pass

Y
yuyang18 已提交
442
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
443 444 445 446
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


447
class GradientClipByGlobalNorm(GradientClipBase):
448
    """
449 450 451 452 453 454 455 456 457 458 459 460 461 462
    Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in 
    :math:`t\_list` , and limit it to ``clip_norm`` .
    
    - If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
    
    - If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
    
    The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
    Gradient clip will takes effect after being set in ``optimizer.minimize(grad_clip)`` , see the document ``optimizer`` 
    (for example: :ref:`api_fluid_optimizer_SGDOptimizer`).

    The clipping formula is:
463 464 465 466 467 468 469 470 471 472 473 474

    .. math::

        t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    Args:
475 476 477 478 479
        clip_norm (float): The maximum norm value.
        group_name (str, optional): The group name for this clip. Default value is ``default_group``
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
480 481 482

    Examples:
        .. code-block:: python
483 484
        
            # use for Static mode
485
            import paddle
486 487 488 489 490
            import paddle.fluid as fluid
            import numpy as np
                        
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
491
            with fluid.program_guard(
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
                    main_program=main_prog, startup_program=startup_prog):
                image = fluid.data(
                    name='x', shape=[-1, 2], dtype='float32')
                predict = fluid.layers.fc(input=image, size=3, act='relu') # Trainable parameters: fc_0.w.0, fc_0.b.0
                loss = fluid.layers.mean(predict)
                
                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)
                
                # Clip a part of parameters in network: (e.g. fc_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(Parameter):
                # # It can be easily filtered by Parameter.name (name can be set in fluid.ParamAttr, and the default name is fc_0.w_0, fc_0.b_0)
                #   return Parameter.name=="fc_0.w_0"
                # clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1)
                sgd_optimizer.minimize(loss, grad_clip=clip)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x = np.random.uniform(-100, 100, (10, 2)).astype('float32')
            exe.run(startup_prog)
            out = exe.run(main_prog, feed={'x': x}, fetch_list=loss)
516

517

518 519 520
            # use for Dygraph mode
            import paddle
            import paddle.fluid as fluid
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
            with fluid.dygraph.guard():
                linear = fluid.dygraph.Linear(10, 10)  # Trainable: linear_0.w.0, linear_0.b.0
                inputs = fluid.layers.uniform_random([32, 10]).astype('float32')
                out = linear(fluid.dygraph.to_variable(inputs))
                loss = fluid.layers.reduce_mean(out)
                loss.backward()

                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)

                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(ParamBase):
                # # It can be easily filtered by ParamBase.name(name can be set in fluid.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
                #   return ParamBase.name == "linear_0.w_0"
                # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
                #   return ParamBase.name == linear.weight.name
                # clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGD(
                    learning_rate=0.1, parameter_list=linear.parameters())
                sgd_optimizer.minimize(loss, grad_clip=clip)
544

545 546
    """

547 548 549
    def __init__(self, clip_norm, group_name="default_group", need_clip=None):
        super(GradientClipByGlobalNorm, self).__init__(need_clip)
        self.clip_norm = float(clip_norm)
F
update  
fengjiayi 已提交
550
        self.group_name = group_name
551

F
fengjiayi 已提交
552
    def __str__(self):
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)

    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                continue
            merge_grad = g
            if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
            square = layers.square(merge_grad)
            sum_square = layers.reduce_sum(square)
            sum_square_list.append(sum_square)

        # all parameters have been filterd out
        if len(sum_square_list) == 0:
            return params_grads

        global_norm_var = layers.concat(sum_square_list)
        global_norm_var = layers.reduce_sum(global_norm_var)
        global_norm_var = layers.sqrt(global_norm_var)
        max_global_norm = layers.fill_constant(
            shape=[1], dtype='float32', value=self.clip_norm)
        clip_var = layers.elementwise_div(
            x=max_global_norm,
            y=layers.elementwise_max(
                x=global_norm_var, y=max_global_norm))
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.elementwise_mul(x=g, y=clip_var)
            params_and_grads.append((p, new_grad))

        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    continue
                merge_grad = g
                with p.block.program._optimized_guard([p, g]):
                    if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                        merge_grad = layers.merge_selected_rows(g)
                        merge_grad = layers.get_tensor_from_selected_rows(
                            merge_grad)

                    square = layers.square(merge_grad)
                    sum_square = layers.reduce_sum(input=square)
                    sum_square_list.append(sum_square)

            # all parameters have been filterd out
            if len(sum_square_list) == 0:
                return params_grads

            with p.block.program._optimized_guard([p, g]):
                global_norm_var = layers.sums(sum_square_list)
                global_norm_var = layers.sqrt(x=global_norm_var)
                max_global_norm = layers.fill_constant(
                    shape=[1], dtype="float32", value=self.clip_norm)
                scale_var = layers.elementwise_div(
                    x=max_global_norm,
                    y=layers.elementwise_max(
                        x=max_global_norm, y=global_norm_var))

            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.elementwise_mul(x=g, y=scale_var)
                params_and_grads.append((p, new_grad))

        _correct_clip_op_role_var(params_and_grads)
        return params_and_grads
F
fengjiayi 已提交
645

Y
yuyang18 已提交
646
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
647 648 649 650 651 652 653 654 655 656
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
                shape=[1], dtype="float32", value=self.clip_norm)
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
657

C
chengduo 已提交
658 659 660 661 662 663
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

        square = layers.square(merge_grad)
P
phlrain 已提交
664
        local_norm_var = layers.reduce_sum(input=square)
F
update  
fengjiayi 已提交
665
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
666

F
update  
fengjiayi 已提交
667
        self.context = context
668

Y
yuyang18 已提交
669
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
670 671 672
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
T
tensor-tang 已提交
673
            group_norm_var = layers.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
674 675 676
            clip_var = self.context[self.group_name + "_clip"]
            group_scale_var = layers.elementwise_div(
                x=clip_var,
F
fengjiayi 已提交
677
                y=layers.elementwise_max(
F
update  
fengjiayi 已提交
678
                    x=clip_var, y=group_norm_var))
679
            assert group_scale_var.shape == (1, )
F
update  
fengjiayi 已提交
680
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
681

F
update  
fengjiayi 已提交
682 683
        new_grad = layers.elementwise_mul(
            x=grad, y=self.context[group_scale_name])
C
chengduo 已提交
684

685
        return param, new_grad
F
fengjiayi 已提交
686 687


688
@framework.dygraph_not_support
F
fengjiayi 已提交
689
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
690
    """
691 692 693 694 695 696 697 698
    Warning:
    
        This API must be used after building network, and before ``minimize`` , 
        and it may be removed in future releases, so it is not recommended. 
        It is recommended to use ``minimize(loss, grad_clip=clip)`` to clip gradient. 
        There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` , 
        :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
        
699 700 701
    To specify parameters that require gradient clip.

    Args:
702 703 704 705 706
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default value: None, and there is no 
            gradient clipping.
Z
Zeng Jinle 已提交
707
        param_list (list(Variable), optional): Parameters that require gradient clip.
708
                It can be a list of parameter or a list of parameter's name.
709
                Default None, meaning that all parameters in the program will be included.
Z
Zeng Jinle 已提交
710
        program (Program, optional): The program where parameters are located.
711 712 713 714 715 716 717
                Default None, meaning that using :ref:`api_fluid_default_main_program` .

    Returns:
        None

    Examples:
        .. code-block:: python
C
Chengmo 已提交
718

719 720 721
            import paddle.fluid as fluid

            def network():
C
Chengmo 已提交
722 723
                image = fluid.data(name='image', shape=[
                                   None, 28], dtype='float32')
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
                param_attr1 = fluid.ParamAttr("fc1_param")
                fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1)
                param_attr2 = fluid.ParamAttr("fc2_param")
                fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2)
                loss = fluid.layers.reduce_mean(fc2)
                return loss


            # network 1: clip all parameter gradient
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

            # network 2: clip parameter gradient by name
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=["fc1_param", "fc2_param"])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

749
            # network 3: clip parameter gradient by value
750 751 752 753 754 755 756 757 758
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                param_var1 = fluid.default_main_program().global_block().var("fc1_param")
                param_var2 = fluid.default_main_program().global_block().var("fc2_param")
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=[param_var1, param_var2])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
            
            # network 4: use 'set_gradient_clip' and 'minimize(grad_clip=clip)' together
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0)
                clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                # Set the gradient clipping strategy: clip1
                fluid.clip.set_gradient_clip(clip1)
                # Set the gradient clipping strategy: clip2
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss, grad_clip=clip2)
                # 'set_gradient_clip' will not take effect when setting has a conflict, 
                # and the gradient clipping strategy will be 'clip2'
            
            
F
fengjiayi 已提交
774
    """
775 776 777 778 779 780 781 782
    warnings.warn("Caution! 'set_gradient_clip' is not recommended "
                  "and may be deprecated in future! "
                  "We recommend a new strategy: clip gradient by "
                  "'optimizer.minimize(loss, grad_clip=clip)'. "
                  "This method can reduce the mistakes, please "
                  "see documention of 'optimzier.minimize'.")

    if not isinstance(clip, GradientClipBase):
F
fengjiayi 已提交
783
        raise TypeError(
784
            "'clip' should be an instance of GradientClipBase's derived class")
F
fengjiayi 已提交
785 786
    if program is None:
        program = framework.default_main_program()
787 788 789 790 791 792 793 794 795 796

    for op in program.block(0).ops:
        if 'op_namescope' in op.all_attrs() and "optimizer" in op.attr(
                "op_namescope"):
            warnings.warn(
                "'minimize' has been invoked before, this will make 'set_gradient_clip' "
                "be ineffective! Please invoke 'set_gradient_clip' before 'minimize'."
            )
            break

F
fengjiayi 已提交
797 798
    if param_list is None:
        param_list = program.block(0).all_parameters()
799
    if all(isinstance(elem, six.string_types) for elem in param_list):
F
fengjiayi 已提交
800 801 802 803 804 805 806
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
807
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
808 809


810
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
811
    context = dict()
812 813 814
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
815
        with p.block.program._optimized_guard(
816 817
            [p, g]), framework.name_scope('gradient_clip_@CLIP'):
            clip_attr = getattr(p, 'gradient_clip_attr', None)
Y
yuyang18 已提交
818
            if clip_attr is None:
819 820
                return param_grads
            if not isinstance(clip_attr, GradientClipBase):
Y
yuyang18 已提交
821
                raise TypeError(
822
                    "clip attribute should be an instance of GradientClipBase")
Y
Yu Yang 已提交
823

Y
yuyang18 已提交
824
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
825 826

    res = []
827 828 829
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
830
        with p.block.program._optimized_guard(
831
            [p, g]), framework.name_scope('graident_clip_@CLIP'):
832 833
            param, new_grad = clip_attr._create_operators(param=p, grad=g)
            res.append([param, new_grad])
Y
Yu Yang 已提交
834

835 836 837 838 839 840 841 842
    _correct_clip_op_role_var(res)
    return res


# change wrong mapping relation between param & grad in clip op
def _correct_clip_op_role_var(params_grads):
    for param, grad in params_grads:
        if grad is None:
843
            continue
844 845
        for op in param.block.program.global_block().ops:
            if 'op_namescope' in op.all_attrs() and "gradient_clip" in op.attr(
C
Chengmo 已提交
846 847 848
                    "op_namescope"):
                if op.attr('op_role_var'):
                    param_name = op.attr('op_role_var')[0]
849 850 851 852 853
                    index = 0
                    for i in range(len(params_grads)):
                        if params_grads[i][0].name == param_name:
                            index = i
                    correct_p_g = [param_name, params_grads[index][1].name]
C
Chengmo 已提交
854
                    op._set_attr('op_role_var', correct_p_g)
Y
Yu Yang 已提交
855 856 857


ClipByValue = GradientClipByValue
F
fengjiayi 已提交
858 859
ClipByNorm = GradientClipByNorm
ClipByGlobalNorm = GradientClipByGlobalNorm